

Graph neural networks and an application to molecule generation

Franco Scarselli

DEPARTMENT OF INFORMATION ENGINEERING AND MATHEMATICS
UNIVERSITY OF SIENA

OUTLINE

- Graph neural networks (GNNs)
- Applications of GNNs
- A method for molecule generation
- Some experimental results

Graph Neural Networks (GNNs)

Graphs

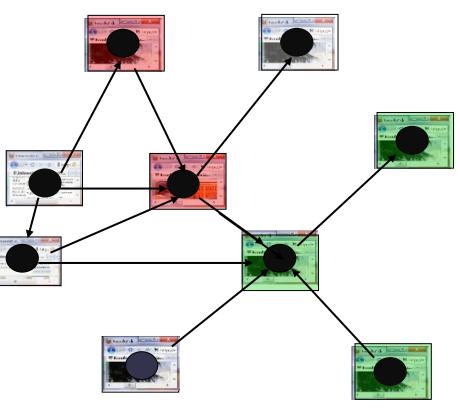
- they allow to represent
 - patterns (nodes with attached vector features)
 - their relationships (edges with attached vector features)

GNNs

- A class of machine learning models for graph processing
- They take in input a graph an return an output at each node/edge

An example: web spam detection

- Goal: learning by examples to detect spam pages using
- Web connectivity
- Page content

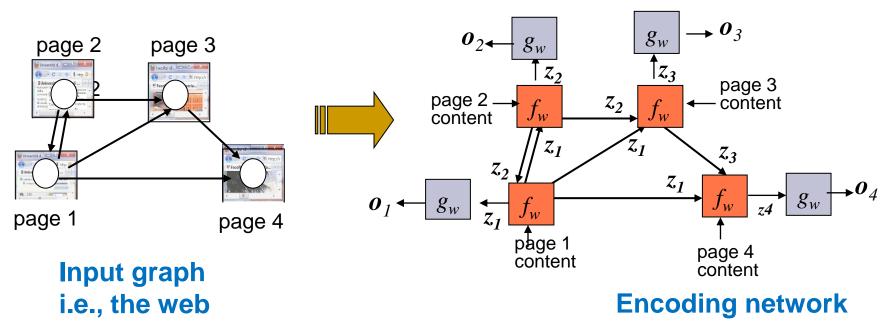


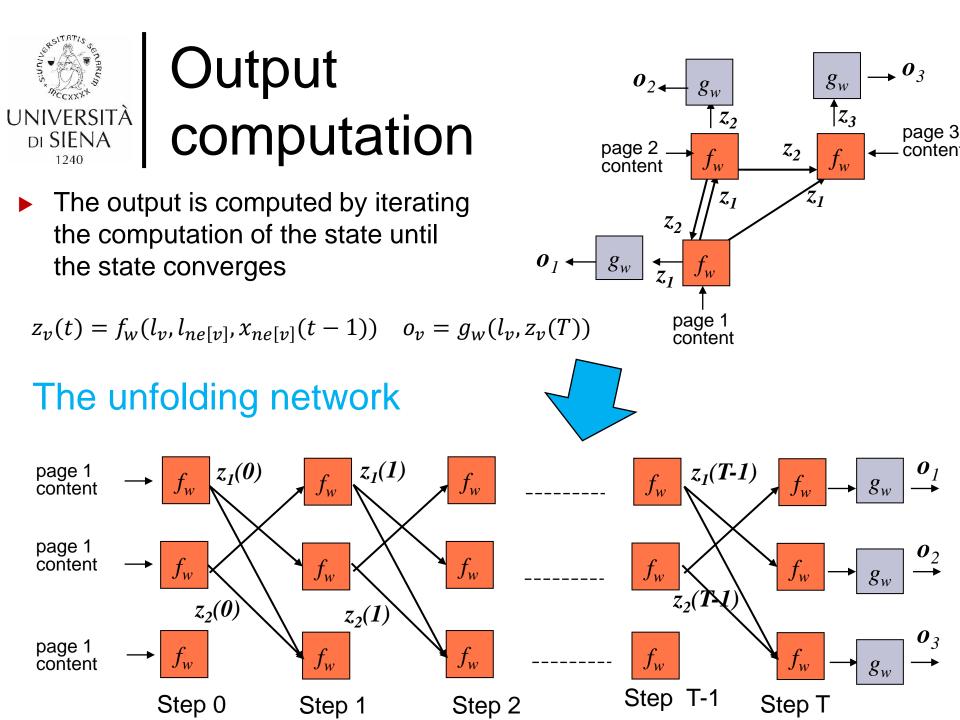
Red=spam Green=not spam Black=Unkown

The GNN model (the first version)

Two f and g neural modules (an instance for each node)

- f compute a state z_v for each node
- g compute an output o_v for each node
- f modules are locally connected so as the graph
- All the modules share the same parameters





Modern GNNs

Modern message passage models

 $z_{v}(t) = COMBINE_{w}(x_{v}(t-1), AGGRREGATE_{w}(x_{ne[v]}(t-1))))$

- Different parameters (and state dimension) at each step
- Special types of modules: pooling, focus of attention, explanation, …
- Different types combination and aggregation functions
- ► GNNs for dynamic data

>..

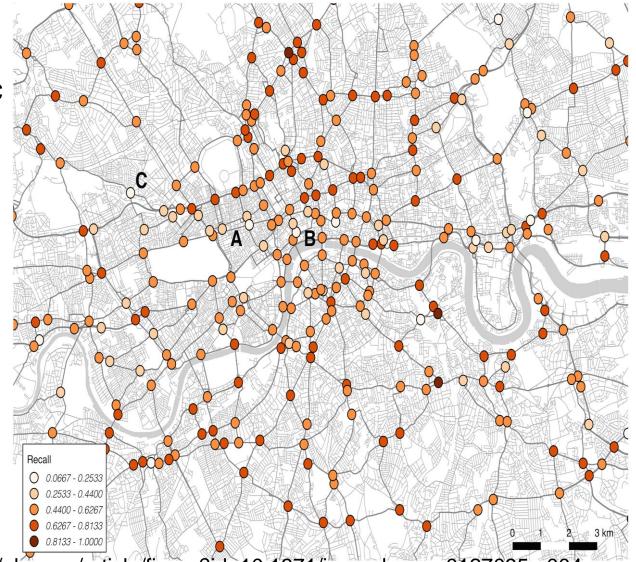
Applications: document UNIVERSITÀ DI SIENA citation networks

- To classify research papers using
 - citation network
 - paper content: bag of words representation

Source https://arxiv.org/abs/1611.08/402

Road networks

 To predict traffic learning for previous examples of traffic loads



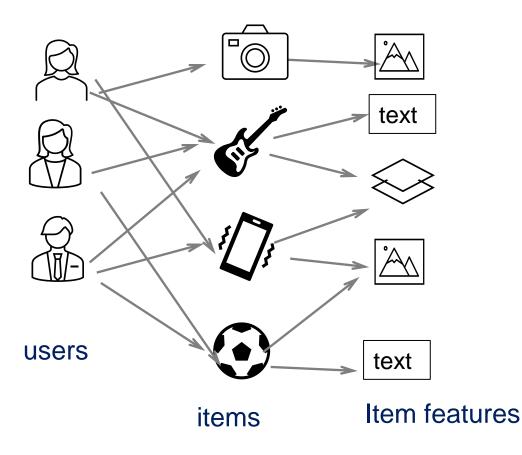
Source: https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0127095.g004

Large scale recommendation system

- To recommend items to users using
 - User-item network

. . .

 Item features, eg images, text,



Other examples of applications

- Microsoft have experimented GNNs for program understanding
- Deep mind have used GNNs for traffic prediction, protein function prediction,
- Facebook has used GNNs to encode wikipedia graph
- Researchers at Large Hadron Collider at CERN will use GNNs to analyse data

• • • • • • •

A future general case?

Previous applications regard homogenous graphs for single tasks

A company/organization aggregates into a single data warehouse all its information

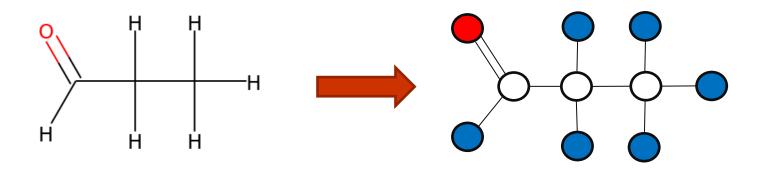
The data look as a single big graph

A lot of nice new problems to play with

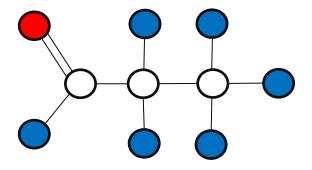
- Heterogenous patterns (nodes/edges)
- Different tasks to be solved (in sequence, contemporaneously)
- Different types of learning involved, e.g. inductive and transductive learning

| Molecular generative Graph Neural | Networks for Drug Discovery (MG²N²) | with P. Bongini, M Bianchini

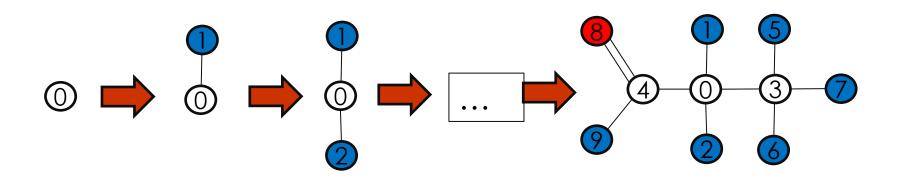
Molecules are usually represented as undirected graphs: atoms correspond to nodes and bonds correspond to edges.



Molecular generative Graph Neural UNIVERSITÀ Networks for Drug Discovery (MG²N²)

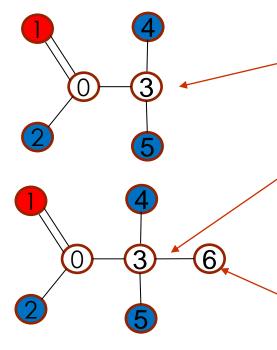


Generation starts from a graph composed of a single atom (sampled from the training set distribution). Each step is a standalone problem.



Molecular generative Graph Neural UNIVERSITÀ Networks for Drug Discovery (MG²N²)

Each step is split into three subproblems

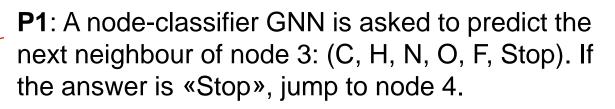


P1: Do I generate another neighbour for node 3? Of which type? **P2**: Which is the type of bond (3,6)?

P3: Do I generate any extra bond: (0,6), (1,6), (2,6), (4,6), (5,6)?

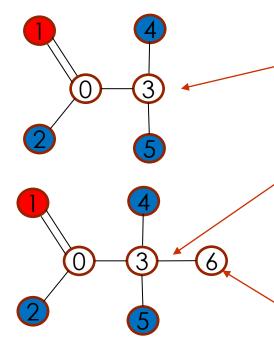
GNN Modules

Each step is split into three subproblems

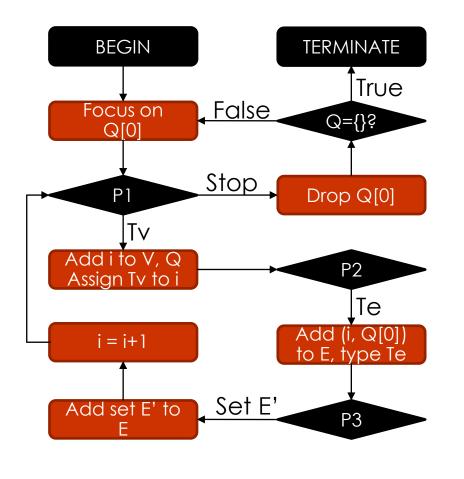


P2: Otherwise, an edge-classifier GNN is asked to predict the type of bond (3,6): (I, II, III).

P3: An edge predictor GNN decides if any extra bonds should be generated for the new node (and of which type).



Algorithm Chart



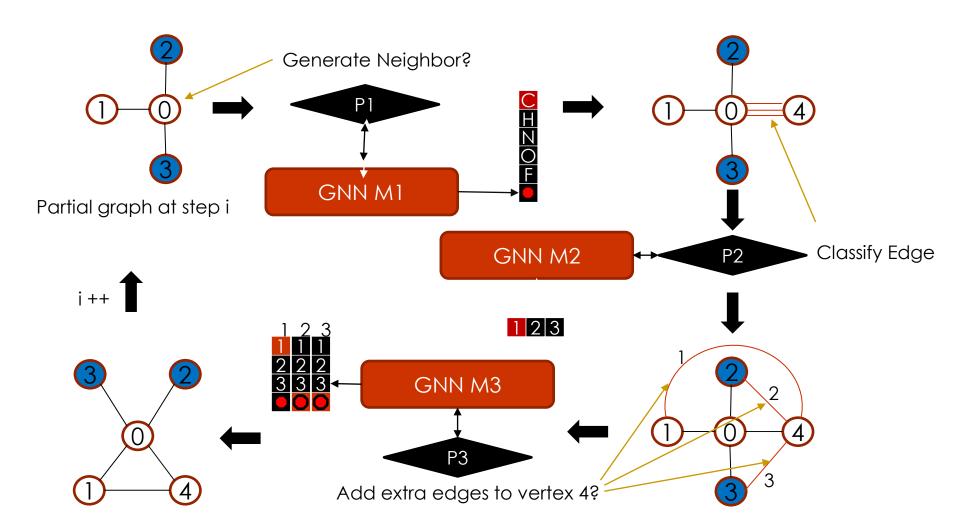
Generation of a graph G: G(I)

- G=(V,E)
- V: Vertex Set
- E: Edge Set
- Q: Expansion Queue
- S: Starting Distribution

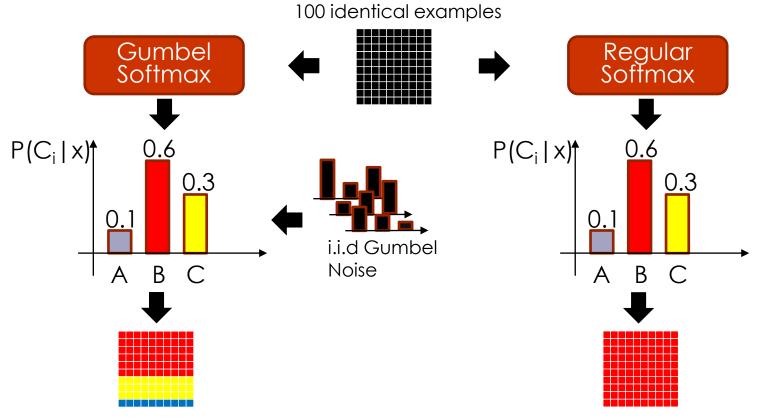
P1: Choose if to generate neighbor, and its type.P2: Choose edge typeP3: Choose which edges to generate, and their types.

Initial conditions: $E = \{\}, V = \{0\},$ type of vertex 0 sampled from training set, i=1, Q= $\{0\}$.

Generation Step Example



Gumbel Softmax Classifier



60% of examples are assigned to class B, 30% to class C, 10% to class A.

B has the highest probability, every example is assigned to class B.

About MG²N²

- GNN can use the whole graph information to decide
- Generation by iterative methods is "more explainable"
- GNN modules are trained separately
 - Make training/retraining much more flexible
 - It is based on an assumption their independence

QM9 Dataset

- Dataset of 134k molecules
- 5 atom types (CHNOF)
- 3 bond types (Single, double, triple)
- The objective is to generate new molecules (not found in QM9) which are chemically valid
- New molecules should have similar chemical properties with respect to a held-out test set (proof of generalization)

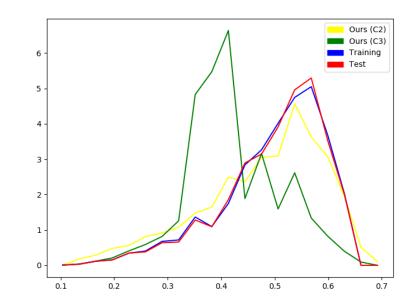
Experiments

- Each experiment consists in generating 10K molecule graphs
- A held-out test set of 10K graphs will be used to compare their chemical properties
- Chemical Validity, Novelty and Uniqueness are assessed with the RdKit package
- Molecular Mass, logP and QED are measured with RdKit as well

Comparing chemical properties

0.4 - 0.3 - 0.2 - 0.1 - 0.0 - 0.1 - 0.0

logP score



QED score

Experimental Results

- A comparison was carried out with other models for the unconditioned generation of molecules.
- GrammarVAE is the best SMILES-based VAE on QM9
- MolGAN (RL-based) is the best sequential model on QM9
- GraphVAE is the best graph-based VAE (and state of the art) for unconditioned generation on QM9

Model	Valid	Unique	Novel	VUN	Avg. QED	Avg. logP	Avg. Mol. Wt.
GrammarVAE	0.602	0.093	0.809	0.045	-	-	-
GraphVAE	0.557	0.760	0.616	0.261	-	-	-
MolGAN	0.981	0.104	0.942	0.096	-	-	-
Ours(C2)	0.511	0.888	1.000	0.454	0.461 (0.116)	0.272(1.336)	134.8(45.7)
Ours(C3)	0.668	0.340	1.000	0.227	0.404(0.088)	0.238(1.093)	75.3(52.8)
Test	-	-	-	-	0.482(0.096)	0.270(1.325)	127.3(7.6)

Generated Molecules

F. Sof tty. ally made XX =5 the with the - Fift ty fa tt tit + Æ the the Atte X 大子 Full =6+ -Hor Hor 米 美家 非大 +JXXY XH -=--圣子 教育 教育 教育 生 投 Ares X4 YHA KI A Xtx XX *√*+*}*++++ $\rightarrow + \succ$ 4th July X -13 XXX tre LA the \searrow the third they ++++ ----the

Thank you for your attention!

Reference

Molecular generative Graph Neural Networks for Drug Discovery, P Bongini, M Bianchini, F Scarselli Neurocomputing