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Introduction: Josephine Thomas @
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m Diploma in physics (TU Berlin)

m Doctoral thesis on 'Using
non-linear dimension reduction
to embedd networks into
hyperbolic space’ (TU Dresden)

m Data Scientist (Fraunhofer IEE)
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— :
Causing a GNN revolution with GAIN.
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Introduction: Prof. Dr. Bernhard Sick

Gain

m Director Department Intelligent Embedded
Systems (IES)

m 24 researchers, 12 external doctoral
candidates
m Focus on Machine Learning and Artificial
Intelligence
m Basic research: e.g. uncertainty modeling,
active learning, collaborative learning
m Applications: e.g. autonomous driving,
future energy systems, physics and
materials

m Mentor of GAIN and HyMeKI
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Research Topics

Gain

0. Survey on dynamic GNN’s and analysis of graph types
1. Develop GNN’s with different dynamics

m changing node/link attributes
m changing numbers of nodes and links
m fully dynamic model

2. Explainable GNN'’s

3. Generation of graphs with GNN'’s
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Graph Neural Network (GNN)

Message Passing for Structure Learning
Gain
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Graph Neural Network (GNN)

Message Passing for Structure Learning
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Graph Learning Problems @
Gain



https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain
Supervised Unsupervised Semi-Supervised
Classification Clustering Transductive Class./Regr.
Regression Embedding Inductive Class./Regr.
Temporal Predictions | Temporal Pattern Detection Temporal Predictions

GAIN | 12


https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain

Node-/Edge-/(Sub-)Graph-Level

|

Classification
Regression
Temporal Predictions

Clustering
Embedding
Temporal Pattern Detection

Transductive Class./Regr.
Inductive Class./Regr.
Temporal Predictions

GAIN | 12



https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain
Node-/Edge-/(Sub-)Graph-Level
Supervised Unsupervised \ Semi-Supervised
Clustering Transductive Class./Regr.
Regression Embedding Inductive Class./Regr.
Temporal Predictions | Temporal Pattern Detection Temporal Predictions

GAIN | 12


https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain
Node-/Edge-/(Sub-)Graph-Level
Supervised Unsupervised \ Semi-Supervised
Classification Clustering
Regression Embedding

Temporal Predictions | Temporal Pattern Detection Temporal Predictions

GAIN | 12


https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain
Node-/Edge-/(Sub-)Graph-Level
Supervised Unsupervised \ Semi-Supervised
Classification Clustering Transductive Class./Regr.
Regression Inductive Class./Regr.
Temporal Predictions | Temporal Pattern Detection Temporal Predictions

GAIN | 12


https://ieeexplore.ieee.org/abstract/document/4700287?casa_token=IA8t6jPmzc4AAAAA:Tpp5xaUKGj0kUvPQR8Nb3CChul8TLHkOTVA50Qr-X8uQ5Dtku-Zlp3iZU5OlA8YTMiSg_UASMg
https://openaccess.thecvf.com/content_cvpr_2017/papers/Monti_Geometric_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/2007.03113.pdf

Graph Learning Problems

Gain
Node-/Edge-/(Sub-)Graph-Level
Supervised Unsupervised \ Semi-Supervised
Classification Clustering Transductive Class./Regr.
Regression Embedding Inductive Class./Regr.
Temporal Predictions | Temporal Pattern Detection Temporal Predictions

Example GNN’s:
m Structure Learning: GNN [Scarselli et al. 2008]
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Gain

How to represent a struct. dyn. Graph for the Processing with GNN’s?
m Representation of Continuous Dynamics
m Large-Scale Processing
How to choose the Model-Update?
m Addition and Deletion of Information
m Efficient and in Real-Time
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m Graph Property Preservation
m Smoothness
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Attribute-Dynamic Graphs

« static in the structure of their nodes and edges
» dynamic in the node and edge attributes.
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Representation possibilities: @
Gain




Gain
+ discrete-time dynamic (DTD)

Gd = (&1,82,---,87), Where
ie€{l,2,..., T} are time steps and g; is some static graph
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+ discrete-time dynamic (DTD)

Gd = (&1,82,---,87), Where
ie€{l,2,..., T} are time steps and g; is some static graph

+ continuous-time dynamic (CTD)

Ge=(g,€), where € is a set containing some events

Example for an event:

at time stamp ¢,

e = (t, add , v) that is, e = (t,v,a) thatis,
called v into the of node v in
graph g. graph g equals a.

GAIN
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Example: COVID-19 Forecasting
Gain

» Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural
Networks, by A. Kapoor et al.
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https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9

Explainability: Accuracy-Interpretability Trade-off

source

Interpretability

@ Linear Regression
@ Decision Tree

@ K-Nearest Neighbors
@ Random Forest

@ Support Vector Machines

@ Neural Nets

Accuracy
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Generation of Graphs with GNNs @
Gain

Adding additional instances to an otherwise too small data set

Scale-free Graph Scale-free Graph Scale-free Graph
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Contact

GAIN
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Josephine Thomas
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