Project Kick-Off

Graphs in Artificial Intelligence and Neural Networks

Josephine Thomas, Silvia Beddar-Wiesing, Alice Moallemy

5th of May 2021

Thank you!

Content

- 2 What is the purpose of the kick-off?
- 3 What is GAIN all about?

4 Project Overview

- Graph Neuronal Networks and Graph Learning Problems
- Structure-Dynamic Graphs
- Attribute-Dynamic Graphs
- Explainability
- Generation of Graphs with GNNs

5 Strategy

Introduction: Josephine Thomas

- Diploma in physics (TU Berlin)
- Doctoral thesis on 'Using non-linear dimension reduction to embedd networks into hyperbolic space' (TU Dresden)
- Data Scientist (Fraunhofer IEE)

 B.Sc. in Mathematics Combinatorial Optimization

- B.Sc. in Mathematics Combinatorial Optimization
- M.Sc. in Computer Science Computational Intelligence and Data Analytics

- B.Sc. in Mathematics Combinatorial Optimization
- M.Sc. in Computer Science Computational Intelligence and Data Analytics
- Research Assistant at
 - Fraunhofer IEE Kassel
 - Intelligent Embedded Systems, University of Kassel

- B.Sc. in Mathematics Combinatorial Optimization
- M.Sc. in Computer Science Computational Intelligence and Data Analytics
- Research Assistant at
 - Fraunhofer IEE Kassel
 - Intelligent Embedded Systems, University of Kassel
- Current Research Topic: Machine Learning for structure-dynamic Graphs

- M.Sc. Mathematics (University of Kassel)
- Application focus in Computer Science

- M.Sc. Mathematics (University of Kassel)
- Application focus in Computer Science

Previous experiences cover:

- practice (Fraunhofer IEE)
- teaching (Tutor at University)
- research (University of Genoa)

- M.Sc. Mathematics (University of Kassel)
- Application focus in Computer Science

Previous experiences cover:

- practice (Fraunhofer IEE)
- teaching (Tutor at University)
- research (University of Genoa)

 \rightarrow Next personal goal: Causing a GNN revolution with GAIN.

Introduction: Prof. Dr. Bernhard Sick

- Director Department Intelligent Embedded Systems (IES)
- 24 researchers, 12 external doctoral candidates
- Focus on Machine Learning and Artificial Intelligence
 - Basic research: e.g. uncertainty modeling, active learning, collaborative learning
 - Applications: e.g. autonomous driving, future energy systems, physics and materials
- Mentor of GAIN and HyMeKI

What is the purpose of the kick-off?

We would like ...

■ ... you to get to know us and to possibly form collaborations,

What is the purpose of the kick-off?

We would like ...

- ... you to get to know us and to possibly form collaborations,
- ... all of us to be inspired by bringing people from different topics and various backgrounds together,

What is the purpose of the kick-off?

We would like ...

- ... you to get to know us and to possibly form collaborations,
- ... all of us to be inspired by bringing people from different topics and various backgrounds together,
- ... you to give us feedback regarding our strategy.

■ Success of Deep Learning

- Success of Deep Learning
- Interesting data in form of graphs

- Success of Deep Learning
- Interesting data in form of graphs
- Importance of Dynamics and Explainability

- Success of Deep Learning
- Interesting data in form of graphs
- Importance of Dynamics and Explainability
- Use cases in supply networks

- Success of Deep Learning
- Interesting data in form of graphs
- Importance of Dynamics and Explainability
- Use cases in supply networks

Research Topics

- 0. Survey on dynamic GNN's and analysis of graph types
- 1. Develop GNN's with different dynamics
 - changing node/link attributes
 - changing numbers of nodes and links
 - fully dynamic model
- 2. Explainable GNN's
- 3. Generation of graphs with GNN's

Graph Neural Network (GNN) Message Passing for Structure Learning

Graph Neural Network (GNN) Message Passing for Structure Learning

Graph Learning Problems

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions
	••••	

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions
	••••	

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions

Example GNN's:

Structure Learning: GNN [Scarselli et al. 2008]

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions

Example GNN's:

- Structure Learning: GNN [Scarselli et al. 2008]
- Geometric DL on Non-Euclidean Data: MoNet [Monti, Bronstein et al. 2016]

Node-/Edge-/(Sub-)Graph-Level		
Supervised	Unsupervised	Semi-Supervised
Classification	Clustering	Transductive Class./Regr.
Regression	Embedding	Inductive Class./Regr.
Temporal Predictions	Temporal Pattern Detection	Temporal Predictions
••••		

Example GNN's:

- Structure Learning: GNN [Scarselli et al. 2008]
- Geometric DL on Non-Euclidean Data: MoNet [Monti, Bronstein et al. 2016]
- Temporal and Structural Learning: Spatio-Temporal GNN [Kapoor et al. 2020]

Structure-Dynamic Graphs

Structure-Dynamic Graphs

Structure-Dynamic Graphs

How to represent a struct. dyn. Graph for the Processing with GNN's?

- Representation of Continuous Dynamics
- Large-Scale Processing

How to represent a struct. dyn. Graph for the Processing with GNN's?

- Representation of Continuous Dynamics
- Large-Scale Processing

How to choose the Model-Update?

- Addition and Deletion of Information
- Efficient and in Real-Time

How to represent a struct. dyn. Graph for the Processing with GNN's?

- Representation of Continuous Dynamics
- Large-Scale Processing

How to choose the Model-Update?

- Addition and Deletion of Information
- Efficient and in Real-Time

How to consider additional Properties for the Embedding?

- Graph Property Preservation
- Smoothness
- Efficiency

Attribute-Dynamic Graphs

Attribute-Dynamic Graphs

• static in the structure of their nodes and edges

Attribute-Dynamic Graphs

- static in the structure of their nodes and edges
- dynamic in the node and edge attributes.

discrete-time dynamic (DTD)

 $\mathcal{G}_d = (g_1, g_2, \ldots, g_T),$ where $i \in \{1, 2, \dots, T\}$ are time steps and g_i is some static graph

discrete-time dynamic (DTD)

 $\mathcal{G}_d = (g_1, g_2, \dots, g_T), \text{ where}$

 $i \in \{1, 2, \dots, T\}$ are time steps and g_i is some static graph

continuous-time dynamic (CTD)

 $\mathcal{G}_c = (g, \mathcal{E}), \text{ where } \mathcal{E} \text{ is a set containing some events}$

discrete-time dynamic (DTD)

 $\mathcal{G}_d = (g_1, g_2, \dots, g_T),$ where $i \in \{1, 2, \dots, T\}$ are time steps and g_i is some static graph

continuous-time dynamic (CTD)

 $\mathcal{G}_c = (g, \mathcal{E}), \text{ where } \mathcal{E} \text{ is a set containing some events}$

Example for an event:

at time stamp t,

 $\epsilon = (t, \text{ add }, v)$ that is, add a node called v into graph g. $\epsilon = (t, v, a)$ that is, the attribute of node v in graph g equals a.

• Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural Networks, by A. Kapoor et al.

- Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural Networks, by A. Kapoor et al.
 - From GPS data to spatio-temporal graph
 - Nodes represent regions.
 - Spatial edges represent inter-region connectivity.
 - Temporal edges represent consideration of past spread behavior of one node.

- Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural Networks, by A. Kapoor et al.
 - From GPS data to spatio-temporal graph
 - Nodes represent regions.
 - Spatial edges represent inter-region connectivity.
 - Temporal edges represent consideration of past spread behavior of one node.
- Graph is attribute-dynamic

- Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural Networks, by A. Kapoor et al.
 - From GPS data to spatio-temporal graph
 - Nodes represent regions.
 - Spatial edges represent inter-region connectivity.
 - Temporal edges represent consideration of past spread behavior of one node.
- Graph is attribute-dynamic
- If regions would be Covid-19 hotspots, then it would be structure-dynamic, too.

- Examining COVID-19 Forecasting using Spatial-Temporal Graph Neural Networks, by A. Kapoor et al.
 - From GPS data to spatio-temporal graph
 - Nodes represent regions.
 - Spatial edges represent inter-region connectivity.
 - Temporal edges represent consideration of past spread behavior of one node.
- Graph is attribute-dynamic
- If regions would be Covid-19 hotspots, then it would be structure-dynamic, too.

Explainability: Accuracy-Interpretability Trade-off

Explainability: Accuracy-Interpretability Trade-off

■ inherent vs post-hoc

- inherent vs post-hoc
- blackbox vs. whitebox explainer

- inherent vs post-hoc
- blackbox vs. whitebox explainer
- instance-based vs. model based

- inherent vs post-hoc
- blackbox vs. whitebox explainer
- instance-based vs. model based

Generation of Graphs with GNNs

Adding additional instances to an otherwise too small data set

figure is self made

Strategy

Contact

Thank you for your attention! Questions?

GAIN

gain@uni-kassel.de Josephine Thomas jthomas@uni-kassel.de Silvia Beddar-Wiesing s.beddarwiesing@uni-kassel.de Alice Moallemy-Oureh amoallemy@uni-kassel.de

gain-group.de phine-lab.science

