## APPLICATION OF MACHINE LEARNING METHODS IN POWER GRID OPERATION

Martin Braun, Alexander Scheidler

Fraunhofer IEE & University of Kassel



#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- AI Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition



#### German "Energiewende" (status – scenarios – megatrends)



IEE

## Mega Trends



### Renewable Energy Sources (RES)

**RES** in distribution

Data, information, communication, automation

Cellular microgrid approach



#### Power Systems as Critical Infrastrucure



Quelle: https://www.netdoktor.at/anatomie/herz-7149

## Smart Grid Integration of Distributed Energy Resources





#### Electrical Grid Characterization (Examples)

- Transmission Systems vs. Distribution systems
  - Meshed  $\leftarrow \rightarrow$  Radial
  - Interconnected European Power System  $\leftarrow \rightarrow$  Local cables in streets
  - High reliability (no blackouts)  $\leftarrow \rightarrow$  Average outage time of about 1-2 hours in residential areas
  - Time domain spectrum
  - Planning (annual over decades)
  - Operational planning (hours over days)
  - Operational management (minutes)
  - Primary controls for frequency/voltage stability (seconds)
  - Transient stability / Protection (milliseconds)



💹 Fraunhofer

IEE



. . .

. . .

#### **Electrical Grid Applications (Examples)**

- Grid Planning (static models)
  - Grid Analysis (Data Fusion of historic data sets)
  - Optimization of future grid designs under uncertainty
- Grid Operation (quasi-stationary models with time series)
  - State Estimation / State Forecasting
  - Optimization to keep voltage range, maximum loading and n-1-security
    - With active and reactive power flows
    - By Distributed generators / grid assets
    - By reconfiguration (e.g. after faults)
- Grid Stability (dynamic/transient models with differential equations)



### Why ML/AI in power grids ?

Real measurable benefit against classical methods!

- Increase speed of grid calculations

   (e.g. large grid models with nodal time series)
  - Results nearer to real time (operation)
  - Reduce computational efforts (desktop instead of cluster)
- Find better solutions in optimization / estimation
  - e.g. combinatorical grid planning 2<sup>(number of measures)</sup>
  - e.g. state estimation



#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- AI Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition





# COMPETENCE CENTER COGNITIVE ENERGY SYSTEMS

We make energy intelligent!

Bild @Freepic





| Raw Materials                                   | Conversion /<br>Generation                                              | Transport /<br>Distribution                                           | Trading /<br>Sales                                                                           | Customer / Services                                                   |
|-------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| ¢<br>T                                          | (F)                                                                     |                                                                       |                                                                                              | Ø                                                                     |
| Cognitive Energy System<br>Technology           |                                                                         | Cognitive<br>Grids                                                    | Cognitive Energy Economics                                                                   |                                                                       |
| <ul><li>Procurement</li><li>Logistics</li></ul> | <ul><li> Operations</li><li> Maintanence</li><li> Aggregation</li></ul> | <ul> <li>Operations</li> <li>Maintenance</li> <li>Planning</li> </ul> | <ul> <li>Trafing</li> <li>Personalised<br/>products</li> <li>Customer<br/>service</li> </ul> | <ul><li>Flexibility</li><li>Efficiency</li><li>Optimization</li></ul> |



© Fraunhofer

### IC4CES – Entwicklung eines Innovationsclusters für Kognitive Energiesysteme

- 2. Wettbewerbsrunde um die Zukunftscluster
- 15 Finalisten von
   117 Wettbewerbsbeiträgen
- Förderung für Konzeptionsphase
- <u>https://www.bmbf.de/de/karliczek-wir-foerdern-die-innovationsnetzwerke-von-morgen-14401.html</u>
- Kassel Göttingen



UNIKASSEL VERSITÄT





Energie-Forschungszentrum Niedersachsen





#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- AI Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition

Moamar Sayed-Mouchaweh Editor

Artificial Intelligence Techniques for a Scalable Energy Transition

Advanced Methods, Digital Technologies, Decision Support Tools, and Applications

Der Springer



pandapower – Open Source Tool for power system calculation





#### Monitoring of distribution grids

- State of High Voltage Level grids is well known due to extensive measurements
- distribution grids have very little measurements
- In future grids are operated closer to the operational limits due to increased RES / electric vehicle charging
- But: installation of measurement devices is costly and requires reliable communication infrastructure
- -> Demand for methods that can estimate grid state with a relatively low number of real-time measurements
- This problem is called State-Estimation, traditionally solved with e.g. WLS



Source: https://scientificservices.eu/item/power-system-monitoring--simulation-software/78



IEE







#### Machine learning for grid state estimation

Our approach: Artificial Neural Network for State-Estimation

ANN Input: real-time measurements

ANN Output:

- bus voltage magnitudes  $V_k$
- current flow through the lines  $I_l$
- active power flows  $P_l$
- reactive power flows  $Q_l$
- for the nodes k and lines l





### Training of the ANN

#### Create synthetic training samples:



Powerflow ( ignational power) to calculate synthetic grid states



Seite 19 © Fraunhofer

#### **Example Estimation Results**





#### Benchmarking Example



Figure 5.2: Comparison of the mean success rates of the monitoring schemes regarding different test criteria. The categories *cat1 - cat6* are transferred from Table 5.10





#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- Al Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition



#### **Power Flow Problem**

- Widely used analysis method to study power grids
- Given: properties of Equipment (Lines, Transformers, Grid-Topology, ...), Loads, Generation
- Goal: Calculate the resulting Steady-State Voltages and Powerflow
- Different formulations: AC/DC, balanced/unbalanced
- Mostly used calculation method: Newton-Rhapson Method
- GNN based Approaches:
  - Graph neural solver for power systems. B. Donon, B. Donnot, I. Guyon, and A. Marot. International Joint Conference on Neural Networks (IJCNN), 2019.
  - Deep Statistical Solvers; Donon · Zhengying Liu · Wenzhuo LIU · Isabelle Guyon · Antoine Marot · Marc Schoenauer, NeurIPS2020





#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- Al Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition



#### Optimal Power Flow (OPF)

OPF is a mathematical process, which is essential in the grid operation to fulfil the goal of e.g., *minimization of operational costs (losses)* under the operational constraints e.g., *branch loading percent* and *allowed voltage range* by adapting the working state of grid assets e.g., *generators (P, Q, V)*.

- Solution Methods
  - Standard: mathematical Optimization
    - Long computation time
    - Mathm. modell of the problem necessary
    - Convergence difficulty due to non-convexity
  - Recently raising interest in ML-methods to solve OPF (50+ Papers 2019/20)





#### ANN for Optimal Power Flow



How to train such a model ?





# Our new Approach in the Lighthouse-Project "KI-OPF" based on Differential Programming



💹 Fraunhofer

IEE

- No numerical solver/extra tools required
- Suitable for probabilistic simulation

Seite 27 © Fraunhofer

#### Outline

- Background Energiewende / Challenges in electrical grids
- Competence Center Cognitive Energy Systems
- Al Approaches in electrical grids
  - State Estimation / Monitoring
  - Power Flow
  - Optimal Power Flow
  - L2RPN Competition



## **REINFORCEMENT LEARNING FOR GRID OPERATION**

- 2016 AlphaGo beats 18-time world GO champion Lee Sedol
- 2019 MuZero masters Chess, Shogi, Go and 57 Atari games to superhuman performance without knowing rules in advance
- Reinforcement Learning
  - Agent learns to act within an environment based on rewards he gets for his actions
- Main Drivers for Development:
  - New Algorithms (Combining Artificial Neural Networks and Reinforcement Learning)
  - Massive Increase in Computing Power
  - Open AI-Gyms





💹 Fraunhofer

## L2RPN CHALLENGES – LEARN TO RUN A POWER NETWORK

- Organized by French TSO RTE
- Goal: Develop Agent that can operate a power grid
  - Possible Actions: Topology, Redispatch
  - Prevent congestion at low cost
  - Deal with outages, attacks and strongly fluctuation sources
- Winners of NeurIPS Challenge: 1st BAIDU, 2nd HUAWEI, 3rd NARI (largest power system vendor in China), 5th Fraunhofer IEE
- 6 Actions Depth (superhuman)



Topology & redispatching actions



#### Example: Track Robustness - Grid





#### Example: Track Robustness – Time Series Data





## Example: Track Robustness - Attack

Time step 17



Time step 21

Time step 24 – GAME OVER







#### **Possible Actions**

- "Traditional" Actions: Redispatch (expensiv), switch off lines
- Topology Actions





#### Example: Track Robustness - Our Agent

Agent changes Topology of the grid -> mitigates overloading

Problem has Extremely large Action Space!





#### Solution Approaches

- Ist NeurIPS (BAIDU): FeedForward-NN for policy training based on gradients and evolutionary black-box optimization
- 2nd NeurIPS (Huawei): Actor-Critic model with PPO + imitation learning
- 3rd NeurIPS: DDQN
- 1st WCCI 2020: GNN
- Next Challenge July 2021: Form a Team IEE + GAIN to participate ?



Fraunhofer

IEE



#### Conclusions

- Power system models = networks / graphs
- Complex challenges in planning and operation of power systems
- Machine learning can bring in benefits
  - Increase speed of calculation
    - Results nearer to real time (operation)
    - Reduce computational efforts (desktop instead of cluster)
  - Finding better solutions in optimization / estimation
- We are open for collaboration ☺
  - We bring in application problems
  - GAIN provides GNN-based methods for solutions



| Contact                                                                                | Fraunhofer IEE– Business Field Grid<br>Planning and Operation                                                                                          |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Prof. DrIng. Martin Braun</b><br>Director Grid Planning and Grid Operation Division | <ul> <li>Techno-economic studies for analyzing,<br/>planning, operation, control, stability of power<br/>systems</li> </ul>                            |  |
| martin.braun@iee.fraunhofer.de<br>Phone: +49 561 7294 118                              | Automated planning tools <u>www.pandapower.pro</u>                                                                                                     |  |
| Dr. Alexander Scheidler<br>alexander.scheidler@iee.fraunhofer.de                       | <ul> <li>Operational tools (algorithms for ancillary<br/>services, hardware/software test platform)<br/><u>www.iee.fraunhofer.de/beeDIP</u></li> </ul> |  |
|                                                                                        | <ul> <li>(Co-simulation) test platforms for operational<br/>solutions <u>www.opsim.net/en</u></li> </ul>                                               |  |
|                                                                                        | <ul> <li>Multi-energy system planning and operation<br/>(power, heat, gas)<br/><u>www.pandapipes.org</u></li> </ul>                                    |  |
| Fraunhofer                                                                             | <ul> <li>Microgrid/ hybrid system test bench and PHiL tests</li> </ul>                                                                                 |  |







#### U N I K A S S E L V E R S I T 'A' T

#### Contact

**Prof. Dr. Martin Braun** Chair of Energy Management and **Power System Operation** 

- Mail: martin.braun@uni-kassel.de
- Phone: +49 561 804 6202
- <u>http://www.e2n.uni-kassel.de</u>

Department e<sup>2</sup>n Energy Management and Power System Operation

- Development of models, methods, algorithms and tools for analysis, operation and control, and design of the future decentralized power system with high share of renewable energies. e.g. www.pandapower.org
- Multi-Objective/Perspective/Level Optimisation of the power system
- Simulation of the power system over time scales and system levels.
- Resilient Control Design incl. power system stability, network restoration, microgrid structures



