Network Geometry

Marián Boguñá

Department of Condensed Matter Physics, University of Barcelona University of Barcelona Institute of Complex Systems

Funding

JAMES S.
MCDONNELL
FOUNDATION

M. Ángeles Serrano Universitat de Barcelona

Dmitri Krioukov Northeastern University

Fragkiskos Papadopoulos Cyprus University of Technology

Guillermo García-Pérez University of Turku

Antoine Allard

Maksim Kitsak Delft University of Technology

Konstantin Zuev Caltech

Pedro Almagro Universitad de Sevilla

Kaj-Kolja Kleineberg

TUDelft

Muhua Zheng Jiangsu University

Amin Vahdat UCSD

Our hypothesis: Geometry matters

Networks can be described as geometric objects: Links' existence depends on distances between nodes

in some networks geometry is explicit, power grids, airport networks, road networks, etc

in others it is implicit: similarity space. It can be detected analyzing the clustering coefficient

Networks from hidden metric spaces

Clustering is just a byproduct

Homogeneous and isotropic spaces

Geometric Random Graphs

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Graphs are homogeneous

Not a good model for real systems!!

 $l \sim \ln N$ Number of nodes Average shortest path length

It can be rephrased as

$$N(r) \sim e^r$$

Number of nodes within a ball of radius r

Euclidean

$$N(r) \sim r^2$$

Spherical
$$N(r) \sim 1 - \cos r$$

Hyperbolic
$$N(r) \sim \cosh r - 1$$

Wisualizing the Hyperbolic plane

Hyperbolic geometry vs. Escher

Courtesy of R. Kallosh and A. Linde, Comptes Rendus Physique. Volume 16, Issue 10, December 2015, Pages 914-927

Poincare vs. Escher

Hyperbolic geometry of complex networks

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá **Phys. Rev. E** 82, 036106 (2010)

Scale-free, small-world, and highly clustered networks!!!

ric random graphs in H²

$$o(r) = \frac{\sinh r}{\cosh R - 1} \approx e^{r - R} \sim e^r$$

connection probability

$$p(x) = \Theta(R - x)$$

How hyperbolic geometry emerges?

Gravity law in Euclidean or spherical geometry

$$Prob(m, m', d) = r\left(\frac{d}{mm'}\right)$$

power law distribution of masses

$$\rho(m) = (\gamma - 1) \frac{m_0^{\gamma - 1}}{m^{\gamma}}$$

effective hyperbolic geometry

Phys. Rev. Lett. 100, 078701 (2008)

Gravity law in Euclidean or spherical geometry

$$\operatorname{Prob}(m, m', d) = r\left(\frac{d}{mm'}\right)$$

power law distribution of masses

$$\rho(m) = (\gamma - 1) \frac{m_0^{\gamma - 1}}{m^{\gamma}}$$

effective hyperbolic geometry

$$r = R - \frac{2}{\zeta} \ln \left[\frac{m}{m_0} \right]$$

$$r\left(\frac{d}{mm'}\right) = r\left(\frac{\Delta\theta N}{2\pi mm'}\right) = \hat{r}\left(e^{\frac{\zeta}{2}(r+r'+\frac{2}{\zeta}\ln\frac{\Delta\theta}{2}-R)}\right)$$

S¹ model

$$\hat{r} \left(e^{\frac{\zeta}{2}} (r + r' + \frac{2}{\zeta} \ln \frac{\Delta \theta}{2} - R) \right)$$

$$x = \begin{cases} r + r' + \frac{2}{\zeta} \ln \frac{\Delta \theta}{2} \\ \hat{r} \left(e^{\frac{\zeta}{2}} (x - R) \right) \end{cases}$$

$$\hat{r} \left(e^{\frac{\zeta}{2}} (x - R) \right)$$

$$\hat{r} (z) \begin{cases} \text{cte} & z \ll 1 \\ 0 & z \gg 1 \end{cases}$$

H² model

the hyperbolic distance is very well approximated by

$$x = r + r' + \frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}$$

$$p(x) = \Theta(R - x)$$

Holographic principle

S¹ model and H² model are isomorphic

Gravity law in Euclidean or spherical geometry

For any integrable function r(x)

$$Prob(m, m', d) = r\left(\frac{d}{mm'}\right)$$

$$\bar{k}(m) \propto m$$

So this is the expected degree of the node. From now on, let's call it κ

Maximally random ensembles of geometric graphs with finite clustering, small-worlds, and uncorrelated at the hidden level

This exponent controls the level of clustering

$$\operatorname{Prob}(\kappa_i, \kappa_j, d_{ij}) = r(\chi_{ij}) = \frac{1}{1 + \chi_{ij}^{\beta}} \text{ with } \chi_{ij} = \frac{d_{ij}}{\mu \kappa_i \kappa_j}$$

Real networks in the hyperbolic plane Metabolic networks The world trade web The Internet CHN Kazakhstan Russia Japan South Korea Airport network Oceania Human connectome N. America S. America

Navigate the Internet without a global knowledge of the network topology

Find communities related to the nodes distribution in the similarity space

K. Zuev, M. Boguñá, G. Bianconi, and D. Krioukov Scientific Reports 5, 9421 (2015)

models generating communities

Define hierarchies in complex networks

B Hierarchy level

Uncover the self-similar architecture of complex networks

Geometric renormalization group

modeling the evolution of complex networks

The geometric nature of weights in real complex networks

Antoine Allard, M. Ángeles Serrano, Guillermo García-Pérez, and Marián Boguñá **Nature Communications** 8, 14103 (2017)

Explain the weighted structure in networks with heterogeneous interactions

 $(\kappa_i \kappa_j)$

Normalized noise

Coupling parameter

Find correlations between layers in multiplexes

Internet IPv4 layer Internet IPv6 layer

But are these class of models the only possibility?

Why should the connection probability be of the form?

$$\left| \operatorname{Prob}(m, m', d) = r \left(\frac{d}{mm'} \right) \right|$$

Is hyperbolic geometry the only choice?

Maximally random ensembles

$$S=-\sum_{\mathbb{A}}P(\mathbb{A})\ln P(\mathbb{A})$$
 Entropy of the graph ensemble $\langle F_l
angle =\sum_{\mathbb{A}}F_l(\mathbb{A})P(\mathbb{A})$ Constraints

$$P(\mathbb{A}) = \frac{e^{-\sum_{l}\alpha_{l}F_{l}(\mathbb{A})}}{Z}$$
 Exponential random graphs
$$Z = \sum_{\mathbb{A}} e^{-\sum_{l}\alpha_{l}F_{l}(\mathbb{A})}$$
 Partition function

$$M(\mathbb{A}) = \sum_{i < j} a_{ij}$$

Total number of links

Distances among pairs of nodes

$$\varepsilon_{ij} = f(x_{ij})$$

Energy of a link, as a function of the distance

$$E(\mathbb{A}) = \sum_{i < j} \varepsilon_{ij} a_{ij} = \sum_{i < j} f(x_{ij}) a_{ij}$$

Total energy

$$\begin{array}{c} \langle E \rangle = \bar{E}, \\ \langle M \rangle = \bar{M} \end{array}$$

Homogeneous geometric random graphs

$$P(\mathbb{A}) = \frac{\prod_{i < j} e^{\beta(\mu - \varepsilon_{ij})a_{ij}}}{Z} = \prod_{i < j} p_{ij}^{a_{ij}} (1 - p_{ij})^{1 - a_{ij}}$$
$$p_{ij} = \frac{1}{e^{\beta(\varepsilon_{ij} - \mu)} + 1}$$

System of non-interacting Fermions in a thermal bath that can occupy any of n(n-1)/2 posible states of energies

$$\varepsilon_{ij} = f(x_{ij})$$

Energy of a link, as a function of the distance

Homogeneous geometric random graphs

We look for networks that are simultaneously

Sparse
$$\langle k \rangle = \lim_{n \to \infty} \sum_{j} p_{ij} = \text{Constant}$$

Clustered
$$p_{ij} = \frac{1}{e^{\beta(\varepsilon_{ij} - \mu)} + 1}$$
 Size independent

Small-world
$$\lim_{n \to \infty} \left\langle \sum_{j} x_{ij}^{m} a_{ij} \right\rangle = \infty$$

There is only one possibility meeting all three requirements

$$\epsilon_{ij} = f(x_{ij}) \sim \ln x_{ij}$$
 $\beta \in [d,2d]$ Dimension of the space

$$p_{ij} \sim rac{1}{x_{ij}^{eta}}$$

Parameter regime	Small world	Clustering
$\beta \to 0 \text{ (ER)}$ $\beta < d$	Yes	No
$d < \beta < 2d$	Yes	Yes
$\beta > 2d$ $\beta \to \infty \text{ (RGG)}$	No	Yes

Heterogeneous geometric random graphs

We look for networks that are simultaneously

$$\left\langle \sum_{j} a_{ij} \right\rangle = \kappa_i$$

Clustered
$$p_{ij} = \frac{1}{e^{\beta f(x_{ij}) + \alpha_i + \alpha_j} + 1}$$
 Size independent

Small-world
$$\lim_{n \to \infty} \left\langle \sum_{j} x_{ij}^{m} a_{ij} \right\rangle = \infty$$

$$\left| f(x_{ij}) \sim \ln x_{ij} \right| +$$

$$\beta \in [d, 2d]$$

Degree-degree uncorrelated

$$f(x_{ij}) = \ln x_{ij} \ \forall x_{ij} \ge 0$$

The connection probability takes a Fermi form

$$p_{ij} = \frac{1}{e^{\beta(\varepsilon_{ij} - \mu)} + 1}$$

With redefined energies of states

$$\epsilon_{ij} = \ln \left| \frac{x_{ij}}{(\kappa_i \kappa_j)^{\frac{1}{d}}} \right| \text{ and } \mu = \frac{1}{d} \ln \hat{\mu}$$

The connection probability becomes the connection probability of the S1/H2 model

$$p_{ij} = \frac{1}{1 + \left[\frac{x_{ij}}{(\hat{\mu}\kappa_i\kappa_j)^{\frac{1}{d}}}\right]^{\beta}}$$

The take home lesson

The S^1/H^2 model with the Fermi connection probability is the only maximally random ensemble of geometric random graphs that are simultaneously

Sparse with arbitrary degree distribution

Clustered in the thermodynamic limit

Small-world

Without degree-degree correlations

Thank you very much for your attention

Self-Similarity of Complex Networks and Hidden Metric Spaces

M. A. Serrano, D. Krioukov, and M. Boguñá Phys. Rev. Lett. 100, 078701 (2008)

Hyperbolic geometry of complex networks

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá **Phys. Rev. E** 82, 036106 (2010)

Sustaining the Internet with hyperbolic mapping Popula

M. Boguñá, F. Papadopoulos, and D. Krioukov Nature Communications 1, 62 (2011)

Network cosmology

D. Krioukov, M. Kitsak, R. S. Sinkovits, D. Rideout, D. Mayer, and M. Boguñá **Scientific Reports** 2, 793 (2012)

Emergence of soft communities from geometric preferential attachment

K. Zuev, M. Boguñá, G. Bianconi, and D. Krioukov **Scientific Reports** 5, 9421 (2015)

The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013

Guillermo García-Pérez, Marián Boguñá, Antoine Allard, and M. Ángeles Serrano **Scientific Reports** 6, 33441 (2016)

Multiscale unfolding of real networks by geometric renormalization

Guillermo García-Pérez, Marián Boguñá, and M. Ángeles Serrano **Nature Physics** doi:10.1038/s41567-018-0072-5 (2018)

Small worlds and clustering in spatial networks

M. Boguñá, D. Krioukov, P. Almagro, M. Á. Serrano **Physical Review Research** 2 (2), 023040 (2020)

Navigability of complex networks

M. Boguñá, D. Krioukov, and KC Claffy Nature Physics 5, 74-80 (2009)

Curvature and temperature of complex networks

D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá **Phys. Rev. E** 80, 035101(R) (2009)

Greedy forwarding in dynamics scale-free networks embedded in hyperbolic metric spaces

F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat **IEEE INFOCOM** San Diego, CA, March 2010

Popularity versus similarity in growing networks

F. Papadopoulos, M. Kitsak, M. A. Serrano, M. Boguñá, and D. Krioukov **Nature** 489, 537 (2012)

Uncovering the hidden geometry behind metabolic networks

M. A. Serrano, M. Boguñá, and F. Sagués **Molecular BioSystems** 8, 843-850 (2012)

Hidden geometric correlations in real multiplex networks

Kaj-Kolja Kleineberg, Marián Boguñá, M. Ángeles Serrano, and Fragkiskos Papadopoulos **Nature Physics** 12, 1076 1081 (2016)

The geometric nature of weights in real complex networks

Antoine Allard, M. Ángeles Serrano, Guillermo García-Pérez, and Marián Boguñá Nature Communications 8, 14103 (2017)

Mercator: uncovering faithful hyperbolic embeddings of complex networks

G. García-Pérez, A. Allard, M. Á. Serrano, M. Boguñá New Journal of Physics 21 (12), 123033 (2019)

Network geometry

M. Boguñá, I. Bonamassa, M. De Domenico, S. Havlin, D. Krioukov, M. Ángeles Serrano Nature Reviews Physics 3, 114–135(2021)

Scaling up real networks by geometric branching growth

M. Zheng, G. García-Pérez, M.Boguñá, M. A. Serrano **PNAS** (in press) (2021)