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Our hypothesis: Geometry matters

Networks can be described as geometric objects: Links’ 
existence depends on distances between nodes

in some networks geometry is explicit, power grids, 
airport networks, road networks, etc

in others it is implicit: similarity space. It can be detected analyzing 
the clustering coefficient



1.2. Hidden metric spaces 11

hidden metric space

network topology

Figure 1.3: Illustration of the connection between network topology and hid-
den metric spaces. The blue surface represents an arbitrary metric space on
which several nodes are scattered. The distance among them is given by the
length of the geodesics, or shortest curves, drawn as light dashed lines on the
surface. Connections are established among nearby pairs only, giving rise to re-
sulting topology depicted in the upper layer. Notice that topological triangles
appear naturally as a consequence of the closeness in the hidden metric space.

The first model based on an underlying geometry to be proposed was the S
1

model2 [152]. In this model, every node is assigned two hidden variables, a hid-
den degree and a coordinate on a circle abstracting the simplest geometry for a
similarity space. The connection probability between two nodes then depends
on the ratio between their distance along the circle—their similarity—and the
product of their hidden degrees—their popularities. Therefore, this model re-
sembles a gravity law for connectivity, in the sense that the likelihood for two
nodes to be connected increases with the product of their “masses”, the hidden
degrees, and decreases with the distance among them. This simple model gen-
erates very realistic topologies regardless of the specific form of the connection
probability function, as long as it is a sufficiently fast decaying function of the
aforementioned ratio. Moreover, every node’s degree becomes proportional to
its hidden degree, which confers the model a high level of control over the de-
gree distribution. As we will see when we discuss the mathematical details of
the model, two additional global parameters enable to control the average de-
gree and clustering of the resulting networks as well. It is worth mentioning that

2In fact, it was proposed as a model in arbitrary dimensions, although it has ever since partic-
ularized to its one-dimensional version for simplicity. We explore the general version in detail in
Section 2.6.

Networks from hidden metric spaces

triangle inequality

Clustering is just a byproduct



The cosmological principle 

Complex networks are embedded 
in homogeneous and isotropic 

manifolds



Homogeneous and isotropic spaces

Flat geometries

Positively curved

Negatively curved



Geometric Random Graphs

Distribute points in a plane 
using a Poisson process or 

whatever you like

Connect points that are 
below a critical distance

problems

The generated graphs are 
not small-worlds

Graphs are homogeneous

Not a good model for real 
systems!!
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The problem with small-worlds

Small-world effect It can be rephrased as

N(r) ⇠ r2

length

1

Euclidean

N(r) ⇠ 1 � cos r

length

1

Spherical

N(r) ⇠ cosh r � 1

length

1

Hyperbolic

Average shortest path length Number of nodes Number of nodes within a ball of radius r



Visualizing the Hyperbolic plane

Minkowski ambient space

Poincare representation

Native representation

Hyperbolic 2D plane

N(r) ⇠ cosh r � 1

t2 = 1 + x2 + y2

length

1



Courtesy of R. Kallosh and A. Linde, 
Comptes Rendus Physique. Volume 16, Issue 10, December 2015, Pages 914-927

Hyperbolic geometry vs. Escher



Poincare vs. Escher

Circle limit IV
(Heaven and Hell)
M. E. Escher



Geometric random graphs in H2
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FIG. 2: Mapping between discs in the Euclidean space R2 and
points in the hyperbolic space H3. The x, y-coordinates of the
disc centers in R2 are the x, y-coordinates of the corresponding
points in H3. The z-coordinates of these points are the radii of
the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at di�erent levels of the hierarchy. Two points in H3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R2. Each disc in R2 is mapped to a point
in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R2. But
the shown mapping has the property that if two discs in
R2 are similar, then the two points representing them in
H3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r⇥ is bounded by a constant
C, 1/C � r/r⇥ � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H3 is bounded by some constant C ⇥, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N ⌅ 1 nodes located in the simplest hyperbolic

space of curvature �1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R ⌅ 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ⌅(r) at distance r from the disc
center is

⌅(r) =
sinh r

cosh R � 1
⇤ er�R ⇥ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = �(R � x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ⇥ e�r/2. Therefore, the inverse function
is logarithmic, r(k) ⇥ �2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ⇤ ⌅[r(k)] |r⇥(k)| ⇥ k�3. (3)

We can generalize the node density in Eq. (1):

⌅(r) ⇤ �e�(r�R) ⇥ e�r, � > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads
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FIG. 2: Mapping between discs in the Euclidean space R2 and
points in the hyperbolic space H3. The x, y-coordinates of the
disc centers in R2 are the x, y-coordinates of the corresponding
points in H3. The z-coordinates of these points are the radii of
the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at di�erent levels of the hierarchy. Two points in H3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R2. Each disc in R2 is mapped to a point
in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R2. But
the shown mapping has the property that if two discs in
R2 are similar, then the two points representing them in
H3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r⇥ is bounded by a constant
C, 1/C � r/r⇥ � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H3 is bounded by some constant C ⇥, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N ⌅ 1 nodes located in the simplest hyperbolic

space of curvature �1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R ⌅ 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ⌅(r) at distance r from the disc
center is

⌅(r) =
sinh r

cosh R � 1
⇤ er�R ⇥ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = �(R � x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ⇥ e�r/2. Therefore, the inverse function
is logarithmic, r(k) ⇥ �2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ⇤ ⌅[r(k)] |r⇥(k)| ⇥ k�3. (3)

We can generalize the node density in Eq. (1):

⌅(r) ⇤ �e�(r�R) ⇥ e�r, � > 0. (4)

In this case we cannot compute k(r) exactly, but the
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connection probability

Scale-free, small-world, and 
highly clustered networks!!!

Hyperbolic geometry of complex networks
D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá 
Phys. Rev. E 82, 036106 (2010)



How hyperbolic geometry emerges?  
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4. a connection probability of the form r(d/µ⇧⇧⇥) where d is the distance over the circle

between two nodes with hidden variables ⇧ and ⇧⇥ and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)�⇥, (115)

µ =
⇥ � 1

2k̄
(116)

where ⇥ allows us to tune the clustering. In the limit ⇥ ⇤ ⌅ we have

r(x) = e�x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between ⇧ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

⌥̂(r) =
�e�r

1 � e�RH2
⇥ �e�(r�RH2 ) (119)

here, RH2 is the radius of our hyperbolic disk and � is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is
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�
2 (RH2�r) (120)

with ⌅
2 = �

⇤�1 , or after inversion

r = RH2 � 2

⇤
ln

⇧
⇧

⇧0

⌃
(121)

We will see later that ⇤ =
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�K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ce⌅RH2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of
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Self-Similarity of Complex Networks and Hidden Metric Spaces
M. A. Serrano, D. Krioukov, and M. Boguñá 
Phys. Rev. Lett. 100, 078701 (2008)
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FIG. 2: Mapping between discs in the Euclidean space R2 and
points in the hyperbolic space H3. The x, y-coordinates of the
disc centers in R2 are the x, y-coordinates of the corresponding
points in H3. The z-coordinates of these points are the radii of
the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at di�erent levels of the hierarchy. Two points in H3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.
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Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R2. Each disc in R2 is mapped to a point
in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R2. But
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent � = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ⇥ e��r otherwise. Therefore the degree distri-
bution in the network is

P (k) ⇥ k�⇥ , with ⇥ =

⇤
2� + 1 if � ⇥ 1

2 ,

2 if � � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a di⇥er-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, ⌅), with r distributed exponentially on [0, R] as
in Eq. (4), and ⌅ being uniform on [0, 2⌃]. We want the
expected degree ⇧ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ⌥(⇧) = ⇧⇥�1

0 (⇥ � 1)⇧�⇥ , we must have

⇧ = ⇧0e
�
2 (R�r),

⇤

2
=

�

⇥ � 1
, N = c e

�
2 R, (7)

where ⇤ and c are some constants, and ⇧0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute ⇧, expected
degree. In the ⇧-variables, nodes do not have any radial
coordinates, they are e⇥ectively located on a Euclidean
circle S1 of some radius, which can be set without loss
of generality to N/(2⌃), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees ⇧
and ⇧⇥ is proportional to the di⇥erence of their angular
coordinates �⌅, d = N�⌅/(2⌃). As shown in [5], the
connection probability can be any integrable function of
d/(µ⇧⇧⇥), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x�R, where the new e⇥ec-
tive distance x is

x = r + r⇥ +
2
⇤

ln
�⌅

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, ⌅) and (r⇥, ⌅⇥) in the hyperbolic space H2

of curvature K = �⇤2 is cosh ⇤x = cosh ⇤r cosh ⇤r⇥ �
sinh ⇤r sinh ⇤r⇥ cos �⌅, which for su⇤ciently large r, r⇥,
and �⌅ is closely approximated by

x = r + r⇥ +
2
⇤

ln sin
�⌅

2
. (9)

Therefore, parameter ⇤ in Eq. (7) is the square root of
curvature �K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H2 with
K = �⇤2 in Eq. (9), and the e⇥ective distance in S1 in
Eq. (8) has virtually no e⇥ect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x � R in Eq. (2).

We thus have a di⇥erent view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an e⇥ective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
�

2T (x�R)
=

1

1 +
�

d
µ⇤⇤�

⇥ 1
T

, (10)

the hyperbolic distance is very well 
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent � = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a di⇥er-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, ⌅), with r distributed exponentially on [0, R] as
in Eq. (4), and ⌅ being uniform on [0, 2⌃]. We want the
expected degree ⇧ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ⌥(⇧) = ⇧⇥�1
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where ⇤ and c are some constants, and ⇧0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute ⇧, expected
degree. In the ⇧-variables, nodes do not have any radial
coordinates, they are e⇥ectively located on a Euclidean
circle S1 of some radius, which can be set without loss
of generality to N/(2⌃), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees ⇧
and ⇧⇥ is proportional to the di⇥erence of their angular
coordinates �⌅, d = N�⌅/(2⌃). As shown in [5], the
connection probability can be any integrable function of
d/(µ⇧⇧⇥), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x�R, where the new e⇥ec-
tive distance x is
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. (8)

The hyperbolic distance between two points with polar
coordinates (r, ⌅) and (r⇥, ⌅⇥) in the hyperbolic space H2

of curvature K = �⇤2 is cosh ⇤x = cosh ⇤r cosh ⇤r⇥ �
sinh ⇤r sinh ⇤r⇥ cos �⌅, which for su⇤ciently large r, r⇥,
and �⌅ is closely approximated by
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. (9)

Therefore, parameter ⇤ in Eq. (7) is the square root of
curvature �K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H2 with
K = �⇤2 in Eq. (9), and the e⇥ective distance in S1 in
Eq. (8) has virtually no e⇥ect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x � R in Eq. (2).

We thus have a di⇥erent view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an e⇥ective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
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The connection probability
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Real networks in the hyperbolic plane
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Hyperbolic maps of complex networks can be used to
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Navigating the Internet

Navigate the Internet without a global knowledge of the network topology

Sustaining the Internet with hyperbolic mapping
M. Boguñá, F. Papadopoulos, and D. Krioukov 
Nature Communications 1, 62 (2011) 



Communities

Find communities related to the nodes distribution in the similarity space
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FIG. 3: Angular distribution of biological pathways in
E. coli. The whole angular domain [0, 360o] is divided in 50
bins of 7, 2o each and for each bin we compute the fraction
of reactions of the pathway in it. Each pathway is shown in
a di↵erent graph. Di↵erent colors indicate di↵erent general
metabolic classes: red for Amino Acids metabolism (number-
ing the graphs from left to right and from top to bottom, 1-
10), orange for metabolism of Cofactors and Vitamins (11-12),
violet for Nucleotide metabolism (13-14), magenta for tRNA
charging (15), turquoise for Carbohydrate metabolism (16-
22), grey for Alternate Carbon metabolism (23), blue for En-
ergy metabolism (24,27), green for Transport pathways (25-
26), brown for Glycan metabolism (28-30), and maroon for
Lipid metabolism (31-33). Pathway names have been abbre-
viated in standard forms whenever possible.

in related functional categories: Sector 1 and Sector 2
in Fig. 4b-c aggregate pathways related to Cell Mem-
brane metabolism, Sector 3 and Sector 4 in Fig. 4d-e
concentrate Central metabolism, with Sector 3 includ-
ing Energy and part of the Nucleotide metabolism and
Sector 4 including Amino Acid metabolism, Sector 5 in
Fig. 4f condenses the remaining Nucleotide metabolism,
and Sector 6 and Sector 7 in Fig. 4g-h account for the
Glycan metabolism, with Sector 6 mixing basically mono
and polysaccharide related pathways, while the pathways
related to murein, a polymer that forms the cell wall, ap-
pearing well separated in Sector 7.

Corresponding representations for human metabolism
are shown in Fig. 10. The number of pathways is con-
siderably larger but common features to E. coli pathway
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FIG. 4: Sector modules for E. coli’s metabolism. Reac-
tions in related functional categories are observed to aggregate
in specific regions of the circle. The whole angular domain is
divided into eight di↵erent angular sectors delimited by void
regions in the ranked distribution of reaction angles. This
distribution and the angular coordinates defining the sectors
are given in the left upper graph of the panel. Each sec-
tor is indicated in a di↵erent color. The remaining graphs
show the pathway concentration, the fraction of reactions of
that pathway, in each sector. The higher concentrations in
each sector mostly correspond to pathways in related func-
tional categories: S1 and S2 aggregate pathways related to
Cell Membrane metabolism (plots b and c), S3 concentrates
Central metabolism including Energy and part of the Nu-
cleotide metabolism (plot d), S4 gathers Central metabolism
including Amino Acids metabolism (plot e), S5 condenses the
remaining Nucleotide metabolism (plot f) and S6 and S7 ac-
count for Glycan metabolism (plots g and h), with S6 mix-
ing basically mono and polysaccharide related pathways and
pathways related to murein, a polymer that forms the cell
wall, well separated in S7. Pathway names have been abbre-
viated in standard forms whenever possible.

localization patterns are evidenced in qualitative terms.
Pathways can be divided again into di↵erent categories
according to their angular concentration, with the dif-
ference that the general level of pathway localization in
human metabolism is higher than in E. coli. The average
angular concentration of pathways in human metabolism
is 0.82, as compared to 0.79 in E. coli (see Methods) and
the average size of maximum peaks in the pathways an-
gular distributions in 0.36 for E. coli while for human
metabolism it is 0.50. However, the higher level of local-
ization seems to coexist with a higher entanglement of
the di↵erent families of metabolic reactions, i.e carbon
metabolism, lipid metabolism, etc.. Another observation
is that transversal pathways in E. coli, like Cofactor and
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Weights are heterogeneous
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Maximally random ensembles

6

clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

6

clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?

ACKNOWLEDGMENTS

We acknowledge support from a James S. McDon-
nell Foundation Scholar Award in Complex Systems; the
ICREA Academia prize, funded by the Generalitat de
Catalunya; Ministerio de Economı́a y Competitividad of
Spain project no. FIS2016-76830-C2-2-P (AEI/FEDER,
UE); the project Mapping Big Data Systems: embedding
large complex networks in low-dimensional hidden metric
spaces – Ayudas Fundación BBVA a Equipos de Inves-
tigación Cient́ıfica 2017; Generalitat de Catalunya grant
No. 2017SGR1064; the NSF Grant No. IIS-1741355; and
ARO Grant Nos. W911NF-16-1-0391 and W911NF-17-1-
0491.

Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)
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particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Entropy of the graph 
ensemble

Constraints

Exponential random 
graphs

Partition function
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Total number of links
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Distances among pairs of nodes
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Energy of a link, as a 
function of the distance
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Total energy
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Constraints
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one can check [49] that the ensemble distribution (A3)
can be written as

P (A) =

Q
i<j e

�(µ�"ij)aij

Z

=
Y

i<j

p
aij

ij (1� pij)
1�aij , where (A13)

pij =
1

e�("ij�µ) + 1
(A14)

is the connection probability that takes the standard
Fermi-Dirac form, and where the values of the chemi-
cal potential µ and the inverse temperature � determine
the average degree and link length, respectively.

In heterogeneous networks, instead of one average de-
gree constraint (A10), we have n per-node constraints

hkii =
*
X

j

aij

+
= i, (A15)

where i is any given sequence of expected degrees. Con-
sequently, instead of one Lagrange multiplier (A12), we
have n Lagrange multipliers ↵i. The values of i deter-
mine the values of ↵i via the set of equations derived
below for a particular case of interest. One can check
that the homogeneous Fermi-Dirac connection probabil-
ity (A14) changes in the heterogeneous case to

pij =
1

e�"ij+↵i+↵j + 1
. (A16)

Suppose now that the coordinates of nodes are no
longer fixed on the manifold, but that they are random,
e.g. that they are a binomial or Poisson point process.
Then distances xij are random as well, and so are en-
ergies "ij . Similarly, in the heterogeneous case, suppose
that i are no longer fixed either, but also random, e.g.
sampled from a fixed distribution ⇢(). The Lagrange
multipliers ↵i are then also random. In both the homo-
geneous and heterogeneous cases the connection proba-
bilities pij are now random. Yet since links are still es-
tablished with the same, albeit random, Fermi-Dirac con-
nection probabilities (A14), the resulting ensembles with
random coordinates (and random expected degrees) are
probabilistic mixtures of the grand canonical ensembles
defined above. We call these mixtures hypergrandcanon-
ical ensembles since energies "ij (and degrees i) are no
longer parameters but hyperparameters instead. These
hypergrandcanonical mixtures are conceptually no dif-
ferent from how a (grand)canonical ensemble is itself a
probabilistic mixture of microcanonical ensembles [54].

Appendix B: No degree correlations , f(x) = c lnx

Here we show that the energy function f(x) = c lnx
is the unique one leading to the absence of correlations
of expected degrees in the considered ensembles in the

thermodynamic limit, so that all degree correlations (if
any) are only structural [31].
Formally, the absence of expected degree correlations

means that the probability distribution P (0|) of ex-
pected degrees 0 of nodes to which a random node of
expected degree  is connected, does not depend on . In-
stead of expected degrees ,0 and distribution P (0|),
it is more convenient to work with the corresponding La-
grange multipliers ↵,↵0 and distribution P (↵0|↵), the lat-
ter also independent of ↵ if there are no expected degree
correlations. Using results from [28],

P (↵0|↵) = ⇢(↵0)F (↵+ ↵0)R
d↵00⇢(↵00)F (↵+ ↵00)

(B1)

where ⇢(↵) is the distribution of ↵ defined by ⇢() given
the relations between s and ↵s as documented in the
subsequent section, and function F is defined to be

F (↵+ ↵0) =

Z 1

0

xd�1dx

1 + e�f(x)+↵+↵0 . (B2)

To find under which conditions P (↵0|↵) is independent
of ↵, we di↵erentiate (B1) with respect to ↵ and equate
the result to zero to obtain

F 0(↵+ ↵0)

F (↵+ ↵0)
=

R
⇢(↵00)F 0(↵+ ↵00)d↵00

R
⇢(↵00)F (↵+ ↵00)d↵00 . (B3)

Since the right hand side of this equation does not depend
on ↵0, function F is of the form F (x) = aebx, with a and b
some constants. Define q(x) ⌘ ef(x) and z ⌘ e�(↵+↵0)/�

to rewrite the uncorrelatedness condition as
Z 1

0

xd�1dx

1 + (q(x)/z)�
= azb� . (B4)

That is, the network is uncorrelated at the level of hidden
variables ↵,↵0 whenever Eq. (B4) holds for any value of
z 2 R

+, with a and b some constants.

1. If f(x) = c lnx, then Eq. (B4) holds

We first notice that the energy function f(x) = c lnx
is a su�cient condition for uncorrelatedness, since then
Eq. (B4) trivially holds with b� = d/c and
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2. If Eq. (B4) holds, then f(x) = c lnx

We are next to prove that in the small world regime
where f(x)/ lnx 2 (linf , lsup) for x > X, linf =
lim infx!1 f(x)/ lnx, lsup = lim supx!1 f(x)/ lnx, and
some constant X > 0, the assumption that Eq. (B4)
holds implies that f(x) = c lnx 8x 2 R

+. We consider
two cases.
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one can check [49] that the ensemble distribution (A3)
can be written as

P (A) =

Q
i<j e

�(µ�"ij)aij

Z

=
Y

i<j

p
aij

ij (1� pij)
1�aij , where (A13)

pij =
1

e�("ij�µ) + 1
(A14)

is the connection probability that takes the standard
Fermi-Dirac form, and where the values of the chemi-
cal potential µ and the inverse temperature � determine
the average degree and link length, respectively.

In heterogeneous networks, instead of one average de-
gree constraint (A10), we have n per-node constraints

hkii =
*
X

j

aij

+
= i, (A15)

where i is any given sequence of expected degrees. Con-
sequently, instead of one Lagrange multiplier (A12), we
have n Lagrange multipliers ↵i. The values of i deter-
mine the values of ↵i via the set of equations derived
below for a particular case of interest. One can check
that the homogeneous Fermi-Dirac connection probabil-
ity (A14) changes in the heterogeneous case to

pij =
1

e�"ij+↵i+↵j + 1
. (A16)

Suppose now that the coordinates of nodes are no
longer fixed on the manifold, but that they are random,
e.g. that they are a binomial or Poisson point process.
Then distances xij are random as well, and so are en-
ergies "ij . Similarly, in the heterogeneous case, suppose
that i are no longer fixed either, but also random, e.g.
sampled from a fixed distribution ⇢(). The Lagrange
multipliers ↵i are then also random. In both the homo-
geneous and heterogeneous cases the connection proba-
bilities pij are now random. Yet since links are still es-
tablished with the same, albeit random, Fermi-Dirac con-
nection probabilities (A14), the resulting ensembles with
random coordinates (and random expected degrees) are
probabilistic mixtures of the grand canonical ensembles
defined above. We call these mixtures hypergrandcanon-
ical ensembles since energies "ij (and degrees i) are no
longer parameters but hyperparameters instead. These
hypergrandcanonical mixtures are conceptually no dif-
ferent from how a (grand)canonical ensemble is itself a
probabilistic mixture of microcanonical ensembles [54].

Appendix B: No degree correlations , f(x) = c lnx

Here we show that the energy function f(x) = c lnx
is the unique one leading to the absence of correlations
of expected degrees in the considered ensembles in the

thermodynamic limit, so that all degree correlations (if
any) are only structural [31].
Formally, the absence of expected degree correlations

means that the probability distribution P (0|) of ex-
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(B1)

where ⇢(↵) is the distribution of ↵ defined by ⇢() given
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subsequent section, and function F is defined to be
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Z 1

0

xd�1dx
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To find under which conditions P (↵0|↵) is independent
of ↵, we di↵erentiate (B1) with respect to ↵ and equate
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1. If f(x) = c lnx, then Eq. (B4) holds

We first notice that the energy function f(x) = c lnx
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Eq. (B4) trivially holds with b� = d/c and

a =
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2. If Eq. (B4) holds, then f(x) = c lnx

We are next to prove that in the small world regime
where f(x)/ lnx 2 (linf , lsup) for x > X, linf =
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some constant X > 0, the assumption that Eq. (B4)
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clustering, which is natural.
As a final comment, we have presented spatial net-

work models as hypergrandcanonical ensembles, proba-
bilistic mixtures of grand canonical ones. In the latter
ensembles, the constraints under which the ensemble en-
tropy is maximized are clear: the average energy and
the average number of particles in the ensemble, that
fix the average link length and average degree, or a se-
quence of expected degrees, respectively. What remains
unclear is under what constraints the considered hyper-
grandcanonical ensembles are entropy maximizers. Are
these constraints similar to the grand canonical ones, or
are they completely di↵erent, perhaps related to the ex-
pected number of triangles in the network [48]? In other
words, what are the unbiased maximum entropy spatial
network models for sparse heterogeneous small worlds
with nonzero clustering?
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Appendix A: Spatial networks as
hypergrandcanonical ensembles

Let G{A;P (A)} be an ensemble of networks with adja-
cency matrices A = {aij} and probability measure P (A).
Let also Fl(A) be an arbitrary set of network functions.
The canonical ensemble of random graphs that maximize
the Gibbs entropy

S = �
X

A
P (A) lnP (A) (A1)

under the constraints that the ensemble averages of Fl,

hFli =
X

A
Fl(A)P (A), (A2)

are fixed to some values F̄l, is given by the Boltz-
mann/Gibbs distribution

P (A) =
e�

P
l ↵lFl(A)

Z
, where (A3)

Z =
X

A
e�

P
l ↵lFl(A) (A4)

is the partition function, and ↵l the Lagrange multipliers
coupled to the constraints hFLi = F̄l. The values of F̄l

determine the values of ↵l [49].
The Gibbs distribution is known as an exponential

family distribution in statistics, so that such canon-
ical ensembles are called exponential random graphs
there [50]. This distribution is known to be the unique
unbiased distribution: it is proven that given the con-
straints, this is the unique distribution that encodes
all the information contained in the constraints, and
more importantly, it does not encode any other infor-
mation [51–53].
Note that node pairs enumerate the

�n
2

�
particle

states {i, j}, i < j, that particles—that is, links—can
occupy. If the graphs are simple and unweighted, then
particles are fermions: there can be either zero or one
particle at any particle state. If state {i, j} is occupied,
then aij = 1, and aij = 0 otherwise. Di↵erent system
states then corresponds to di↵erent networks A, and the
number of particles in a system state A is

M(A) =
X

i<j

aij . (A5)

Suppose now that nodes in these networks are n fixed
points in any Riemannian manifold. The coordinates of
these points define the distance matrix X = {xij} be-
tween them on the manifold. Given any function f(x),
we call "ij = f(xij) the energy of the particle state {i, j}.
The energy of the system state A is then

E(A) =
X

i<j

"ijaij =
X

i<j

f(xij)aij . (A6)

Consider now the canonical ensemble defined by just
two functions

F0(A) = E(A), (A7)

F1(A) = M(A), (A8)

and two constraints

hEi = Ē, (A9)

hMi = M̄, (A10)

where Ē, M̄ are given real numbers. Note that this en-
semble is a vanilla grand canonical ensemble in statistical
physics that maximizes ensemble entropy under the av-
erage energy and number of particles constraints. The
latter constraint fixes the average number of links and
consequently the average degree, while the former con-
straint fixes the average link length.

Denoting the Lagrange multipliers by

↵0 = �, (A11)

↵1 = ��µ, (A12)

Energy of a link, as a 
function of the distance

System of non-interacting Fermions in a thermal bath that 
can occupy any of n(n-1)/2 posible states of energies 
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Homogeneous geometric random graphs

We look for networks that are simultaneously
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actually the simplest case, the unit cube with
periodic boundary conditions, or even some
compact hyperbolic manifold (the bolza surface
the simplest example of the latter). that
is, any compact (no boundaries) homogeneous
d-manifold is equally fine for the exposition
below, with very minor modifications (where
the sphere volume explicitly comes in for
instance). i recommend to adjust the
manuscript accordingly because: 1) it
makes the exposition much more general, and
2) saying that the space being d-sphere (as
done above) is somehow special and unique is
not correct. -dk-]

Conditions for the small-world property in

latent-space models. We consider an entropy-
maximizing probabilistic mixture of grand canonical
ensembles of networks with adjacency matrices A = {aij}
and probability measure P (A). In this ensemble, edges
are assumed to have energies "ij = f(xij) depending
on distances in a latent space, where f(xij) is a
monotonically growing function such that the longer the
distance xij between two nodes, the higher the energy
of the corresponding link. We require that the ensemble
average of the total energy, given by

F (A) =
X

i<j

f(xij)aij , (2)

has a fixed value hF i. We also fix the expected number
of particles, i.e., edges

E(A) =
X

i<j

aij , (3)

to hEi. With these constraints, the Gibbs distribution
for the probability measure of graphs in the ensemble
(see SI) becomes

P (A) =

Q
i<j e

�(µ�"ij)aij

Z
=

Y

i<j

p
aij

ij (1� pij)
1�aij , (4)

where the probability of the link between nodes i and j
to exists, i.e., for state (i, j) to be occupied, takes the
familiar Fermi-Dirac form

pij =
1

e�("ij�µ) + 1
. (5)

The chemical potential µ and the inverse temperature
� fix the average number of edges and the average energy,
respectively, and are determined as the solutions of the
following equations:

hF i =
X

i<j

"ijpij =
X

i<j

f(xij)pij , hEi =
X

i<j

pij . (6)

Let us now suppose that {xij} are distances between
n points sprinkled randomly, via the binomial point

process of intensity 1, on the surface of a d-dimensional
sphere [12]. The probabilities of connections pij are now
random since they are functions of random distances xij .
If we restrict ourselves to the case of sparse networks
with the average degree converging to a finite positive
constant hki, then hEi ⇠ n. Thanks to the rotational
invariance of the model for finite n, or its traslational
invariance in the n ! 1 limit, the expected degree
i =

P
jhpiji of any node i converges to hki. Due to

the same rotational!traslational symmetry, all nodes
have the same expected clustering value. The clustering
coe�cient of a given node is defined as the probability
that two randomly chosen neighbors are connected, and
so it exhibits the same scaling with n as the connection
probability pij . To have nonvanishing clustering, pij , and
so ↵ = �µ, has to be independent of n.

So far, the edge energy function f(xij) remains
undefined. We are, however, interested in ensembles of
small-world networks, where the average shortest path
length scales logarithmically (or slower) with the system
size. This requirement constrains the space of possible
energy functions to those that grow no faster than
logarithmically.

To see why, let l(xij) be the distribution of latent
distances xij between connected nodes in our random
graphs, or link lengths. The small-world property
requires that some of these link lengths span the
maximum possible latent distance in the underlying
space. Since nodes are scattered uniformly at random
on the surface of a d-dimensional sphere, the maximum
latent distance between nodes grows as ⇥(n1/d). On the
other hand, if all moments of l(x) are bounded, then
the expected length of the longest link in a graph of size
n grows slower than any power of n. The combination
of these two observations implies that, in the limit
n ! 1, there are no long links that would span the
maximum distance of the system, so that the networks
are necessarily large worlds. Therefore, a necessary, but
not su�cient, condition for them to be small-world is
that some (possibly high) moments of l(xij) diverge with
n, that is,

lim
n!1

*
X

j

xm
ijaij

+
= 1, (7)

for m > mc > 0, where mc is determined below. Since
nodes are randomly and homogeneously scattered in the
sphere, this limit can be approximated as

lim
n!1

*
X

j

xm
ijaij

+
⇡ Cd lim

n!1

Z n1/d

xm+d�1 dx

1 + e�(f(x)�µ)
(8)

⇠ Cde
↵ lim

n!1

Z n1/d

xm+d�1e��f(x)dx,

Small-world

Sparse
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with Cd a constant depending on the space dimension.
If f(x) grows faster than logarithmically, then the last
integral is bounded for any value of m, so that the
networks are always large worlds. If f(x) grows slower
than logarithmically, then the integral diverges for any
value of m, satisfying the necessary condition for small-
worldness stated above. Yet, in the latter case, the

integral
R n1/d

xd�1e��f(x)dx diverges as well, which
means that e↵ (and so pij) must go to zero to yield a
bounded average degree, that is,

hki = lim
n!1

X

j

pij ⇠ e↵
Z n1/d

xd�1e��f(x)dx < 1. (9)

As discussed above, if limn!1 pij = 0, then clustering
goes to zero as well. However, if f(x) = ⇥(lnx) for
large x, then the integral

R n
xme��f(x)dx diverges for

m � mc = � � d > 0, and converges for m < mc. In
particular, it converges for m = 0, so that pij does
not depend on n, and clustering is nonzero in the
thermodynamic limit. In this particular case with
f(x) = ⇥(lnx) and � > d, the distribution of link
lengths is a power law, l(x) ⇠ x��+d�1. Therefore, the
expected length xc of the longest link scales with n as
xc ⇠ n�, where � = min ( 1d ,

1
��d ), i.e., as the expected

maximum among ⇥(n) samples from a power-law
distribution [13]. The networks are then small-worlds
whenever this length is ⇥(n1/d), i.e., if � < 2d. We thus
see that f(x) = ⇥(lnx) and � 2 (d, 2d) are the necessary
and su�cient conditions for networks in the model to
be sparse small-worlds with nonzero clustering in the
thermodynamic limit.

[mm: since the paragraph above is the key
passage/content in the paper, i recommend to
be a bit more careful here along the following
lines:

• let f(x) = c lnx, c > 0, so that f(x) =
⇥(lnx). in this case the exposition above
is correct but only if one replaces �
there with c�. :)

• let d = 1 for simplicity, and set � = 1.
consider f(x) = lnx + c ln lnx. in this
case f(x) 6= ⇥(lnx), but the integralR
xme�f(x)dx =

R
xm

x lnc xdx converges for
m = 0 and any c > 1, and it diverges
for any m > 0, so that for what we want
it’s a perfectly fine case, which is
nevertheless not a part of the picture
presented above.

• generalizing, i think we have to be more
careful translating the integrability
conditions that we need (m =

0-integrable, m > mc-nonintegrable) to
the space of functions that satisfy them,
and be more careful at borderline cases
(a la 1/x is nonintegrable but 1/x lnc x,
1/x lnx lnc lnx, 1/x lnx ln lnx lnc ln lnx, and so
on are all integrable for any c > 1).

• most importantly, do you know any
citations where it is shown rigorously
that the presence of long links of the
order of the space diameter is indeed a
sufficient condition for small worldness?
i recall some papers in the past, but
i cannot quickly find them right now.
without such refs, i’m afraid i’m back
to ground-zero: the presence of long
links is easy-to-see-necessary but
difficult-to-see-sufficient condition.
in particular, the link lengths must
be properly distributed (as a power
law?), and the links themselves, of
these different lengths, must be properly
(randomly?) organized within the graph to
provide appropriate shortcuts between all
different parts of the graph...colorblue
these are the citations that we discussed.
[14] [15] [16][17]

-dk-]
Heterogeneous degree distributions. The

ensembles defined above have homogeneous degree
distributions. To generate ensembles with heterogeneous
degree sequences, we can maximize the entropy of the
ensemble with the constraint in Eq. (3) replaced by the
set of constraints that fix expected degrees of single nodes
to arbitrary values {i}, that is,

h
X

j

aiji = i. (10)

The same derivation as before leads to an ensemble with
connection probability given by

p(xij ,↵i,↵j) =
1

1 + e�f(xij)�↵i�↵j
, (11)

where ↵i is the Lagrange multiplier associated to
the expected degree i. Interestingly, by adding
heterogeneity to the degree distribution, we can constrain
even more the functional form of function f(xij). In
the Supplementary Information, we prove that the
only possible form of f(xij) that generates ensembles
without degree-degree correlations (other than structural
ones [13]) is precisely f(xij) = lnxij .
In this case, when � > d the relation between ↵ and 

is

↵ =
�

d

✓
ln+

1

2
ln µ̂

◆
; with µ̂ =

��(d2 ) sin
d⇡
�

2⇡1+ d
2 hki

. (12)

= Constant
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one can check [49] that the ensemble distribution (A3)
can be written as

P (A) =

Q
i<j e

�(µ�"ij)aij

Z

=
Y

i<j

p
aij

ij (1� pij)
1�aij , where (A13)

pij =
1

e�("ij�µ) + 1
(A14)

is the connection probability that takes the standard
Fermi-Dirac form, and where the values of the chemi-
cal potential µ and the inverse temperature � determine
the average degree and link length, respectively.

In heterogeneous networks, instead of one average de-
gree constraint (A10), we have n per-node constraints

hkii =
*
X

j

aij

+
= i, (A15)

where i is any given sequence of expected degrees. Con-
sequently, instead of one Lagrange multiplier (A12), we
have n Lagrange multipliers ↵i. The values of i deter-
mine the values of ↵i via the set of equations derived
below for a particular case of interest. One can check
that the homogeneous Fermi-Dirac connection probabil-
ity (A14) changes in the heterogeneous case to

pij =
1

e�"ij+↵i+↵j + 1
. (A16)

Suppose now that the coordinates of nodes are no
longer fixed on the manifold, but that they are random,
e.g. that they are a binomial or Poisson point process.
Then distances xij are random as well, and so are en-
ergies "ij . Similarly, in the heterogeneous case, suppose
that i are no longer fixed either, but also random, e.g.
sampled from a fixed distribution ⇢(). The Lagrange
multipliers ↵i are then also random. In both the homo-
geneous and heterogeneous cases the connection proba-
bilities pij are now random. Yet since links are still es-
tablished with the same, albeit random, Fermi-Dirac con-
nection probabilities (A14), the resulting ensembles with
random coordinates (and random expected degrees) are
probabilistic mixtures of the grand canonical ensembles
defined above. We call these mixtures hypergrandcanon-
ical ensembles since energies "ij (and degrees i) are no
longer parameters but hyperparameters instead. These
hypergrandcanonical mixtures are conceptually no dif-
ferent from how a (grand)canonical ensemble is itself a
probabilistic mixture of microcanonical ensembles [54].

Appendix B: No degree correlations , f(x) = c lnx

Here we show that the energy function f(x) = c lnx
is the unique one leading to the absence of correlations
of expected degrees in the considered ensembles in the

thermodynamic limit, so that all degree correlations (if
any) are only structural [31].
Formally, the absence of expected degree correlations

means that the probability distribution P (0|) of ex-
pected degrees 0 of nodes to which a random node of
expected degree  is connected, does not depend on . In-
stead of expected degrees , 0 and distribution P (0|),
it is more convenient to work with the corresponding La-
grange multipliers ↵, ↵0 and distribution P (↵0|↵), the lat-
ter also independent of ↵ if there are no expected degree
correlations. Using results from [28],

P (↵0|↵) = ⇢(↵0)F (↵+ ↵0)R
d↵00⇢(↵00)F (↵+ ↵00)

(B1)

where ⇢(↵) is the distribution of ↵ defined by ⇢() given
the relations between s and ↵s as documented in the
subsequent section, and function F is defined to be

F (↵+ ↵0) =

Z 1

0

xd�1dx

1 + e�f(x)+↵+↵0 . (B2)

To find under which conditions P (↵0|↵) is independent
of ↵, we di↵erentiate (B1) with respect to ↵ and equate
the result to zero to obtain

F 0(↵+ ↵0)

F (↵+ ↵0)
=

R
⇢(↵00)F 0(↵+ ↵00)d↵00

R
⇢(↵00)F (↵+ ↵00)d↵00 . (B3)

Since the right hand side of this equation does not depend
on ↵0, function F is of the form F (x) = aebx, with a and b
some constants. Define q(x) ⌘ ef(x) and z ⌘ e�(↵+↵0)/�

to rewrite the uncorrelatedness condition as
Z 1

0

xd�1dx

1 + (q(x)/z)�
= azb� . (B4)

That is, the network is uncorrelated at the level of hidden
variables ↵, ↵0 whenever Eq. (B4) holds for any value of
z 2 R

+, with a and b some constants.

1. If f(x) = c lnx, then Eq. (B4) holds

We first notice that the energy function f(x) = c lnx
is a su�cient condition for uncorrelatedness, since then
Eq. (B4) trivially holds with b� = d/c and

a =

Z 1

0

td�1dt

1 + tc�
. (B5)

2. If Eq. (B4) holds, then f(x) = c lnx

We are next to prove that in the small world regime
where f(x)/ lnx 2 (linf , lsup) for x > X, linf =
lim infx!1 f(x)/ lnx, lsup = lim supx!1 f(x)/ lnx, and
some constant X > 0, the assumption that Eq. (B4)
holds implies that f(x) = c lnx 8x 2 R

+. We consider
two cases.
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There is only one possibility meeting all three requirements 

✏ij = f(xij) ⇠ lnxij

1

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

1

Dimension of the space

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

1

2

tures hypergrandcanonical ensembles, as some of their pa-
rameters are random, and random parameters are known
as hyperparameters in statistics.

II. SETTINGS AND NOTATIONS

We consider a very general class of spatial network
models. The space is any compact homogeneous and
isotropic Riemannian manifold of dimension d and vol-
ume n, and with no boundaries. We require the curvature
of the manifold to go to zero at n ! 1. That is, the space
is locally the Euclidean space, and it is exactly the Eu-
clidean space R

d in the thermodynamic limit. Examples
are the d-sphere or d-torus of size growing with n such
that its volume is n. Any growing compact d-dimensional
hyperbolic manifold with no boundaries is also fine. On
such a manifold we sprinkle n points uniformly at random
according to the manifold metric. These points are thus
the binomial point process of rate 1 on the manifold, and
they form the node set of a random graph. Conditioned
on node coordinates on the manifold, nodes i and j are
connected independently with probabilities pij = p(xij),
where xij is the distance between i and j on the man-
ifold. By aij we denote the adjacency matrix of these
random graphs: conditioned on node coordinates, aijs
are independent Bernoulli random variables with success
rates pij . These graphs are known as soft random geo-
metric graphs [26, 27].

We interpret these random graph ensembles as proba-
bilistic mixtures of grand canonical ensembles that max-
imize ensemble entropy under the constraints that the
average number of particles and average energy are fixed
to given values. Particles are edges aij here, and their
energies "ij depend on distances xij : "ij = f(xij). The
connection probability function p(x) then takes the fa-
miliar Fermi-Dirac form, see Appendix A,

p(xij) =
1

e�(f(xij)�µ) + 1
. (1)

The Lagrange multipliers corresponding to the number-
of-particles and energy constraints are the chemical po-
tential µ and inverse temperature � � 0, as usual. We
assume that neither f(x) nor � depend on n, but µ, and
consequently the absolute activity � = e�µ, can depend
on n as they usually do in statistical physics. Since ener-
gies "ij are not fixed as in grand canonical ensembles but
are random instead, we call this ensemble a hypergrand-
canonical ensemble.

We require our networks to be always sparse, meaning
that the expected average degree in them is fixed to a
finite positive constant hki for any network size n. We
call a network model a small world if the average hop
distance of shortest paths in the model networks grows
slower than any polynomial of n. In particular, average
distances growing as any polynomial of lnn in a model
would render the model a small world. The model is also
an ultrasmall world if the average distance grows slower

Parameter regime Small world Clustering

� ! 0 (ER)
Yes No

� < d/lsup

d/linf < � < 2d/lsup Yes Yes

� > 2d/linf No Yes
� ! 1 (RGG)

TABLE I. The result summary for homogeneous net-
works. Small world : yes/no: the networks are small/large
worlds. Clustering : yes/no: the networks have nonzero/zero
clustering in the thermodynamic (n ! 1) limit. ER: Erdős-
Rényi random graphs [30]. RGG: sharp random geomet-
ric graphs in R

d [14]. Parameters: � the inverse temper-
ature, d the space dimension, linf = lim infx!1 f(x)/ lnx,
lsup = lim supx!1 f(x)/ lnx, where f(x) is the energy func-
tion: "ij = f (xij), where xij is the distance between nodes
i and j in the space. Note that lsup = 0 corresponds to f(x)
growing slower than logarithmically, in which case the net-
works are in the first regime for any value of � < 1. Note
that linf = 1 corresponds to f(x) growing faster than loga-
rithmically, in which case the networks are in the last regime
for any value of � > 0. Note that f(x) = c lnx+ o (lnx) cor-
responds to linf = lsup = c. The cases with � 2 [d/lsup, d/linf ],
� 2 [2d/lsup, 2d/linf ], and lsup � 2linf require further details
about the specific shape of f(x) to classify the network into
one of the three shown classes.

than any polynomial of lnn. If a model is not a small
world, we call it a large world. By clustering we mean
the average local clustering coe�cient. Symbol ‘⇠’ in
an ⇠ bn or a(x) ⇠ b(x) means that an/bn or a(x)/b(x)
converge to a finite positive constant at n ! 1 or x !
1, respectively.

III. HOMOGENEOUS SPATIAL NETWORKS

In any network model satisfying the settings above,
the degree distribution is homogeneous: in the thermo-
dynamic limit n ! 1 it converges to the Poisson dis-
tribution with the mean equal to the average degree in
the network [28, 29]. By network homogeneity we mean
here not only degree homogeneity, but also all the con-
sequences of the manifest invariance of these ensembles
with respect to the group of isometries of the manifold.
In particular, the expected values of any graph prop-
erty of any two nodes in these random graphs are the
same. For instance, not only the expected degree, but
also the expected clustering of any two nodes is the same
and equal to the average clustering in the network. The
main question is under what conditions these networks
are small worlds and have nonzero clustering in the ther-
modynamic limit.
The results are summarized in Table I. Intuitively, they

are easy to comprehend. If f(x) grows too fast with x, so
that p(x) decays too fast, then the network does not have
su�ciently long links that are needed for small world-
ness. The network is thus necessarily a large world. On

Small worlds and clustering in spatial networks
M. Boguñá, D. Krioukov, P. Almagro, M. Á. Serrano
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actually the simplest case, the unit cube with
periodic boundary conditions, or even some
compact hyperbolic manifold (the bolza surface
the simplest example of the latter). that
is, any compact (no boundaries) homogeneous
d-manifold is equally fine for the exposition
below, with very minor modifications (where
the sphere volume explicitly comes in for
instance). i recommend to adjust the
manuscript accordingly because: 1) it
makes the exposition much more general, and
2) saying that the space being d-sphere (as
done above) is somehow special and unique is
not correct. -dk-]

Conditions for the small-world property in

latent-space models. We consider an entropy-
maximizing probabilistic mixture of grand canonical
ensembles of networks with adjacency matrices A = {aij}
and probability measure P (A). In this ensemble, edges
are assumed to have energies "ij = f(xij) depending
on distances in a latent space, where f(xij) is a
monotonically growing function such that the longer the
distance xij between two nodes, the higher the energy
of the corresponding link. We require that the ensemble
average of the total energy, given by

F (A) =
X

i<j

f(xij)aij , (2)

has a fixed value hF i. We also fix the expected number
of particles, i.e., edges

E(A) =
X

i<j

aij , (3)

to hEi. With these constraints, the Gibbs distribution
for the probability measure of graphs in the ensemble
(see SI) becomes

P (A) =

Q
i<j e

�(µ�"ij)aij

Z
=

Y

i<j

p
aij

ij (1� pij)
1�aij , (4)

where the probability of the link between nodes i and j
to exists, i.e., for state (i, j) to be occupied, takes the
familiar Fermi-Dirac form

pij =
1

e�("ij�µ) + 1
. (5)

The chemical potential µ and the inverse temperature
� fix the average number of edges and the average energy,
respectively, and are determined as the solutions of the
following equations:

hF i =
X

i<j

"ijpij =
X

i<j

f(xij)pij , hEi =
X

i<j

pij . (6)

Let us now suppose that {xij} are distances between
n points sprinkled randomly, via the binomial point

process of intensity 1, on the surface of a d-dimensional
sphere [12]. The probabilities of connections pij are now
random since they are functions of random distances xij .
If we restrict ourselves to the case of sparse networks
with the average degree converging to a finite positive
constant hki, then hEi ⇠ n. Thanks to the rotational
invariance of the model for finite n, or its traslational
invariance in the n ! 1 limit, the expected degree
i =

P
jhpiji of any node i converges to hki. Due to

the same rotational!traslational symmetry, all nodes
have the same expected clustering value. The clustering
coe�cient of a given node is defined as the probability
that two randomly chosen neighbors are connected, and
so it exhibits the same scaling with n as the connection
probability pij . To have nonvanishing clustering, pij , and
so ↵ = �µ, has to be independent of n.

So far, the edge energy function f(xij) remains
undefined. We are, however, interested in ensembles of
small-world networks, where the average shortest path
length scales logarithmically (or slower) with the system
size. This requirement constrains the space of possible
energy functions to those that grow no faster than
logarithmically.

To see why, let l(xij) be the distribution of latent
distances xij between connected nodes in our random
graphs, or link lengths. The small-world property
requires that some of these link lengths span the
maximum possible latent distance in the underlying
space. Since nodes are scattered uniformly at random
on the surface of a d-dimensional sphere, the maximum
latent distance between nodes grows as ⇥(n1/d). On the
other hand, if all moments of l(x) are bounded, then
the expected length of the longest link in a graph of size
n grows slower than any power of n. The combination
of these two observations implies that, in the limit
n ! 1, there are no long links that would span the
maximum distance of the system, so that the networks
are necessarily large worlds. Therefore, a necessary, but
not su�cient, condition for them to be small-world is
that some (possibly high) moments of l(xij) diverge with
n, that is,

lim
n!1

*
X

j

xm
ijaij

+
= 1, (7)

for m > mc > 0, where mc is determined below. Since
nodes are randomly and homogeneously scattered in the
sphere, this limit can be approximated as

lim
n!1

*
X

j

xm
ijaij

+
⇡ Cd lim

n!1

Z n1/d

xm+d�1 dx

1 + e�(f(x)�µ)
(8)

⇠ Cde
↵ lim

n!1

Z n1/d

xm+d�1e��f(x)dx,

Small-worldSmall-worldSmall-world

Sparse

3

with Cd a constant depending on the space dimension.
If f(x) grows faster than logarithmically, then the last
integral is bounded for any value of m, so that the
networks are always large worlds. If f(x) grows slower
than logarithmically, then the integral diverges for any
value of m, satisfying the necessary condition for small-
worldness stated above. Yet, in the latter case, the

integral
R n1/d

xd�1e��f(x)dx diverges as well, which
means that e↵ (and so pij) must go to zero to yield a
bounded average degree, that is,

hki = lim
n!1

X

j

pij ⇠ e↵
Z n1/d

xd�1e��f(x)dx < 1. (9)

As discussed above, if limn!1 pij = 0, then clustering
goes to zero as well. However, if f(x) = ⇥(lnx) for
large x, then the integral

R n
xme��f(x)dx diverges for

m � mc = � � d > 0, and converges for m < mc. In
particular, it converges for m = 0, so that pij does
not depend on n, and clustering is nonzero in the
thermodynamic limit. In this particular case with
f(x) = ⇥(lnx) and � > d, the distribution of link
lengths is a power law, l(x) ⇠ x��+d�1. Therefore, the
expected length xc of the longest link scales with n as
xc ⇠ n�, where � = min ( 1d ,

1
��d ), i.e., as the expected

maximum among ⇥(n) samples from a power-law
distribution [13]. The networks are then small-worlds
whenever this length is ⇥(n1/d), i.e., if � < 2d. We thus
see that f(x) = ⇥(lnx) and � 2 (d, 2d) are the necessary
and su�cient conditions for networks in the model to
be sparse small-worlds with nonzero clustering in the
thermodynamic limit.

[mm: since the paragraph above is the key
passage/content in the paper, i recommend to
be a bit more careful here along the following
lines:

• let f(x) = c lnx, c > 0, so that f(x) =
⇥(lnx). in this case the exposition above
is correct but only if one replaces �
there with c�. :)

• let d = 1 for simplicity, and set � = 1.
consider f(x) = lnx + c ln lnx. in this
case f(x) 6= ⇥(lnx), but the integralR
xme�f(x)dx =

R
xm

x lnc xdx converges for
m = 0 and any c > 1, and it diverges
for any m > 0, so that for what we want
it’s a perfectly fine case, which is
nevertheless not a part of the picture
presented above.

• generalizing, i think we have to be more
careful translating the integrability
conditions that we need (m =

0-integrable, m > mc-nonintegrable) to
the space of functions that satisfy them,
and be more careful at borderline cases
(a la 1/x is nonintegrable but 1/x lnc x,
1/x lnx lnc lnx, 1/x lnx ln lnx lnc ln lnx, and so
on are all integrable for any c > 1).

• most importantly, do you know any
citations where it is shown rigorously
that the presence of long links of the
order of the space diameter is indeed a
sufficient condition for small worldness?
i recall some papers in the past, but
i cannot quickly find them right now.
without such refs, i’m afraid i’m back
to ground-zero: the presence of long
links is easy-to-see-necessary but
difficult-to-see-sufficient condition.
in particular, the link lengths must
be properly distributed (as a power
law?), and the links themselves, of
these different lengths, must be properly
(randomly?) organized within the graph to
provide appropriate shortcuts between all
different parts of the graph...colorblue
these are the citations that we discussed.
[14] [15] [16][17]

-dk-]
Heterogeneous degree distributions. The

ensembles defined above have homogeneous degree
distributions. To generate ensembles with heterogeneous
degree sequences, we can maximize the entropy of the
ensemble with the constraint in Eq. (3) replaced by the
set of constraints that fix expected degrees of single nodes
to arbitrary values {i}, that is,

h
X

j

aiji = i. (10)

The same derivation as before leads to an ensemble with
connection probability given by

p(xij , ↵i, ↵j) =
1

1 + e�f(xij)�↵i�↵j
, (11)

where ↵i is the Lagrange multiplier associated to
the expected degree i. Interestingly, by adding
heterogeneity to the degree distribution, we can constrain
even more the functional form of function f(xij). In
the Supplementary Information, we prove that the
only possible form of f(xij) that generates ensembles
without degree-degree correlations (other than structural
ones [13]) is precisely f(xij) = lnxij .
In this case, when � > d the relation between ↵ and 

is

↵ =
�

d

✓
ln+

1

2
ln µ̂

◆
; with µ̂ =

��(d2 ) sin
d⇡
�

2⇡1+ d
2 hki

. (12)
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If f(x) grows faster than logarithmically, linf = 1, then
l(x) decays faster than a power law, ⇠ = 0, and there are
no long links at all, so that our networks are necessarily
large worlds, the last regime in Table I.

This logic is about the necessary conditions for small
worldness, but they have been proven to be also su�-
cient [32–34], and we confirm all the results above in
simulations in Fig. 1 (small worldness) and Fig. 2 (clus-
tering). Figure 1 shows that the average shortest path
length ls scales with the network size n as ls ⇠ lnb n if
� < 2d, and as ls ⇠ nb if � � 2d. In the small world
regime � < 2d, the exponent b in ls ⇠ lnb n is close to 1
for any � < d, while for � 2 (d, 2d) it is a growing func-
tion of � that appears not to diverge but to approach
some finite maximum value as � approaches 2d. In the
large-world regime � � 2d, exponent b in ls ⇠ nb is also
growing function of � ranging in values from some min-
imum value at � = 2d that does not appear to be zero,
to its theoretical maximum b = 1/d at zero temperature
� ! 1 corresponding to sharp RGGs. The nature of the
small-to-large world phase transition at � = 2d appears
to be an interesting open question [33]. Network sizes
that are su�ciently large to provide any hints regarding
whether this transition is continuous or discontinuous,
can certainly not be reached in simulations. However,
the results in Fig. 1 suggest that the transition is dis-
continuous since the continuous transition would yield
small-world b ! 1 at � ! 2d� and large-world b ! 0
at � ! 2d+.

IV. HETEROGENEOUS SPATIAL NETWORKS

Instead of the chemical potential µ, the Lagrange mul-
tiplier that fixes the expected average degree in the ho-
mogeneous ensemble, in the heterogeneous ensemble we
have n Lagrange multipliers ↵i that fix the expected de-

gree hkii =
DP

j aij
E

of each individual node to a de-

sired value i. The relations between i and ↵i are doc-
umented in Appendix C. Here, we assume that the pa-
rameters i are hyperparameters, meaning they are ran-
dom and sampled from a fixed distribution ⇢(), in which
case we have the same hypergrandcanonical ensemble as
in the homogeneous case above, except that the connec-
tion probability changes from (1) to

p(xij ,↵i,↵j) =
1

e�f(xij)+↵i+↵j + 1
. (3)

The degree distribution in this ensemble con-
verges to the mixed Poisson distribution P (k) =
(1/k!)

R
 

ke�⇢() d whose shape “follows” the shape
of ⇢() [28, 29]. This type of heterogeneous spatial
network models were first introduced in [20], and many
other similar classes of models have been defined and
studied since then [35–37].

The qualitative behavior of clustering—zero versus
nonzero in the thermodynamic limit—is exactly the same

Parameter regime 2 < � < 3 � > 3, � = 1
� ! 0 (HSCM)

USW, ZC SW, ZC
� < d

d < � < 2d USW, PC SW, PC

� > 2d
USW, PC LW, PC

� ! 1 (RHG)

TABLE II. The result summary for the heteroge-
neous networks with f(x) = lnx and Pareto ⇢() as
in [20]. The abbreviations are: HSCM : the hypersoft con-
figuration model [38]; RHG: sharp random hyperbolic graphs
in H

d+1 [21]; USW : ultrasmall worlds; SW : small worlds;
LW : large worlds; ZC : zero clustering at n ! 1; PC : pos-
itive clustering at n ! 1. If f(x) grows slower or faster
than logarithmically, then the networks are in the first and
last rows, respectively. The � = 1 case is the homogeneous
ensemble in Table I.

in these heterogeneous models as in the homogeneous
one. Indeed, the expression (2) for the average degree
hki changes to

hki ⇠
Z n1/d

xd�1 dx

ZZ

↵,↵0
p(x,↵,↵0) ⇢(↵)d↵⇢(↵0)d↵0

⇠
Z

↵
e�↵⇢(↵)d↵

�2 Z n1/d

xd�1e��f(x)dx = �̂In,

(4)

where �̂ = he�↵i2, and ⇢(↵) is the distribution of La-
grange multipliers determined by the distribution of ex-
pected degrees ⇢(). Following exactly the same reason-
ing as in the homogeneous case, albeit applied to �̂In
instead of �In, we thus conclude that clustering is zero
or nonzero at n ! 1 depending on whether In diverges
or converges. For f(x) = lnx for example, this means
that the situation is exactly the same as in the homoge-
neous case: the clustering is zero if � < d and nonzero if
� > d.
Turning to small worldness, we assume henceforth that

f(x) = lnx. We do so not only to simplify the discussion,
but also because we prove in Appendix B that f(x) =
lnx is unique in the sense that this is the only possible
form of f(x) that does not induce any degree correlations
other than the structural ones [31]. We also assume that
the distribution ⇢() of expected degrees  is the Pareto
distribution

⇢() = (� � 1)��1
0 �� , where  � 0 > 0 and � > 2.

(5)
We note that the networks defined by (3,5) with f(x) =
lnx were introduced in [20] and are equivalent to random
hyperbolic graphs [21].

The calculation of the link length distribution l(x) in
this case yields l(x) ⇠ x�� with � = � � d + 1 if � <
d(� � 1), and � = d(� � 2) + 1 otherwise (details are
given in Appendix D). Following the same logic behind
the necessary conditions for small worldness as in the

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

1

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

1

Degree-degree uncorrelated

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

f(xij) = lnxij 8xij � 0

1

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

f(xij) = lnxij 8xij � 0

✏ij = ln
xij

ij

X

j

aij = ki

+

1

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

1

✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

1
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one can check [49] that the ensemble distribution (A3)
can be written as

P (A) =

Q
i<j e

�(µ�"ij)aij

Z

=
Y

i<j

p
aij

ij (1� pij)
1�aij , where (A13)

pij =
1

e�("ij�µ) + 1
(A14)

is the connection probability that takes the standard
Fermi-Dirac form, and where the values of the chemi-
cal potential µ and the inverse temperature � determine
the average degree and link length, respectively.

In heterogeneous networks, instead of one average de-
gree constraint (A10), we have n per-node constraints

hkii =
*
X

j

aij

+
= i, (A15)

where i is any given sequence of expected degrees. Con-
sequently, instead of one Lagrange multiplier (A12), we
have n Lagrange multipliers ↵i. The values of i deter-
mine the values of ↵i via the set of equations derived
below for a particular case of interest. One can check
that the homogeneous Fermi-Dirac connection probabil-
ity (A14) changes in the heterogeneous case to

pij =
1

e�"ij+↵i+↵j + 1
. (A16)

Suppose now that the coordinates of nodes are no
longer fixed on the manifold, but that they are random,
e.g. that they are a binomial or Poisson point process.
Then distances xij are random as well, and so are en-
ergies "ij . Similarly, in the heterogeneous case, suppose
that i are no longer fixed either, but also random, e.g.
sampled from a fixed distribution ⇢(). The Lagrange
multipliers ↵i are then also random. In both the homo-
geneous and heterogeneous cases the connection proba-
bilities pij are now random. Yet since links are still es-
tablished with the same, albeit random, Fermi-Dirac con-
nection probabilities (A14), the resulting ensembles with
random coordinates (and random expected degrees) are
probabilistic mixtures of the grand canonical ensembles
defined above. We call these mixtures hypergrandcanon-
ical ensembles since energies "ij (and degrees i) are no
longer parameters but hyperparameters instead. These
hypergrandcanonical mixtures are conceptually no dif-
ferent from how a (grand)canonical ensemble is itself a
probabilistic mixture of microcanonical ensembles [54].

Appendix B: No degree correlations , f(x) = c lnx

Here we show that the energy function f(x) = c lnx
is the unique one leading to the absence of correlations
of expected degrees in the considered ensembles in the

thermodynamic limit, so that all degree correlations (if
any) are only structural [31].
Formally, the absence of expected degree correlations

means that the probability distribution P (0|) of ex-
pected degrees 0 of nodes to which a random node of
expected degree  is connected, does not depend on . In-
stead of expected degrees , 0 and distribution P (0|),
it is more convenient to work with the corresponding La-
grange multipliers ↵, ↵0 and distribution P (↵0|↵), the lat-
ter also independent of ↵ if there are no expected degree
correlations. Using results from [28],

P (↵0|↵) = ⇢(↵0)F (↵+ ↵0)R
d↵00⇢(↵00)F (↵+ ↵00)

(B1)

where ⇢(↵) is the distribution of ↵ defined by ⇢() given
the relations between s and ↵s as documented in the
subsequent section, and function F is defined to be

F (↵+ ↵0) =

Z 1

0

xd�1dx

1 + e�f(x)+↵+↵0 . (B2)

To find under which conditions P (↵0|↵) is independent
of ↵, we di↵erentiate (B1) with respect to ↵ and equate
the result to zero to obtain

F 0(↵+ ↵0)

F (↵+ ↵0)
=

R
⇢(↵00)F 0(↵+ ↵00)d↵00

R
⇢(↵00)F (↵+ ↵00)d↵00 . (B3)

Since the right hand side of this equation does not depend
on ↵0, function F is of the form F (x) = aebx, with a and b
some constants. Define q(x) ⌘ ef(x) and z ⌘ e�(↵+↵0)/�

to rewrite the uncorrelatedness condition as
Z 1

0

xd�1dx

1 + (q(x)/z)�
= azb� . (B4)

That is, the network is uncorrelated at the level of hidden
variables ↵, ↵0 whenever Eq. (B4) holds for any value of
z 2 R

+, with a and b some constants.

1. If f(x) = c lnx, then Eq. (B4) holds

We first notice that the energy function f(x) = c lnx
is a su�cient condition for uncorrelatedness, since then
Eq. (B4) trivially holds with b� = d/c and

a =

Z 1

0

td�1dt

1 + tc�
. (B5)

2. If Eq. (B4) holds, then f(x) = c lnx

We are next to prove that in the small world regime
where f(x)/ lnx 2 (linf , lsup) for x > X, linf =
lim infx!1 f(x)/ lnx, lsup = lim supx!1 f(x)/ lnx, and
some constant X > 0, the assumption that Eq. (B4)
holds implies that f(x) = c lnx 8x 2 R

+. We consider
two cases.

4

This result implies that the energy ✏ij and chemical
potential µ of an edge-state between nodes with expected
degrees i and j and separated by a distance xij is

✏ij = ln

"
xij

(ij)
1
d

#
and µ =

1

d
ln µ̂. (13)

The connection probability can then be re-written as

p(xij ,i,j) =
1

1 +


xij

(µ̂ij)
1
d

�� . (14)

We then recover the S
d model [18] with the Fermi-

Dirac connection probability, defining the only entropy
maximizing ensemble of sparse heterogeneous networks
with the small-world property, nonzero clustering, and
without degree-degree correlations. Degree heterogeneity
has an additional important e↵ect on the small-world
property. In particular, if ⇢() is Pareto with exponent �,
then the networks are small-worlds whenever d < � < 2d
or 2 < � < 3 [18]. Real-world networks are typically in
the range of � < 3. The corresponding networks in the
model are thus small-world regardless of the value of �
(provided d < �), which can be set to any value to match
the observed clustering.

The ensemble has a continuous phase transition at � =
�c = d, where clustering changes from a positive value
to zero. This is a direct consequence of the divergence of
the chemical potential at �c, that is, lim�!�+

c
µ = �1.

As a consequence, the energy of any edge-state will be
larger than µ and, thus, the occupation probability very
small. This reduces the chances to form triangles even if
three nodes are very close in the latent space.

If � < d, the relation between ↵ and the expected
degree  for n � 1 is given by

↵ = ln+
1

2
ln µ̂; with µ̂ =

c

n1� �
d

, (15)

where c is a constant fixing the average degree of the
network. The value of c depends on the particular
underlaying metric space, i. e. a torus, sphere, etc. The
connection probability becomes

p(xij ,i,j) =
1

1 +
x�
ij

µ̂ij

, (16)

defining an ensemble of random geometric graphs with
the degree distribution following the distribution of s.
However, since p(xij ,i,j) goes to zero for any � 2
(0, d) as n ! 1, these networks have zero clustering in
the thermodynamic limit. Notice that Eq. (16) cannot be
written as a Fermi-Dirac distribution and so the energy
of edges cannot be defined.

Finally, in the infinite-temperature limit � ! 0,
the model loses any dependence on latent distances,

Homogeneous networks, constraints hF i, hEi
Energy function Parameters Network properties

f(x) 2 ⇥(lnx) d < � < 2d SW, C

f(x) 2 o(lnx)
� > 0 SW, ZC

� ! 0 ER

f(x) 2 !(lnx)
� > 0 LW, C

� ! 1 RGG

Heterogeneous networks, constraints hF i, {i}
Energy function Parameters Network properties

✏ij = ln

"
xij

(ij)
1
d

#
d < � < 2d

or SW, C, DDU

� > d and 2 < � < 3

� < d SW, ZC, DDU

� ! 0 SCM

TABLE I. Summary of network ensemble properties as a
function of constrains, the form of the asymptotic behavior
of the edge energy function, and parameter values. SW:
small-world; LW: large-world; C: with clustering; ZC: zero
clustering; DDU: degree-degree uncorrelated. Abbreviations
for graph models: RGG: random geometric graph; ER: Erdős-
Rényi random graph; SCM: soft configuration model. [mm:

this table needs work to be more complete/correct.
for instance: 1) it doesn’t cover the case for
f(x) = ⇥(lnx) and � /2 (d, 2d); 2) it’s incorrect for
the case with f(x) = c lnx. in that regards, the
table in the appendix of the perspective article was
better, but also incomplete in view of the comments
on the previous page. also, the !-notation is
definitely not widely known, and needs a definition.
the same applies to ⇥, but to a lesser extent (it
is well known in computer science, not in physics, i
think?). -dk-]

and converges to the soft version of the configuration
model [20–22]. If is are random and sampled from
a fixed distribution ⇢(), this model is known as the
hypersoft configuration model [23], which maximizes
graph entropy under the degree distribution constrain.

All the results are summarized in Table I.

Conclusions here
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✏ij = f(xij) ⇠ lnxij

� 2 [d, 2d]

pij ⇠
1

x�
ij

f(xij) = lnxij 8xij � 0

✏ij = ln
xij

ij
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The connection probability becomes the connection probability of the S1/H2 model
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The take home lesson

The S1/H2 model with the Fermi connection probability is the only maximally 
random ensemble of geometric random graphs that are simultaneously

Sparse with arbitrary degree distribution

Clustered in the thermodynamic limit

Small-world Without degree-degree correlations
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