
Reliable Graph Machine Learning
Simon Geisler

Simon Geisler Reliable Graph Machine Learning 1



Reliability

This talk focuses on reliability in the sense of 
worst case robustness w.r.t. perturbations of the input
– commonly referred to as adversarial robustness.
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Adversarial Robustness
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Predicted class: “pig” ?



Adversarial Robustness
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Predicted class: “pig” “airliner”



Adversarial Robustness
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ML systems classify the 
adversarially modified 
STOP sign as a speed 
limit sign, [Eykholt 2018]

Kevin Eykholt, et al. "Robust physical-world attacks on deep learning visual classification." CVPR 2018.



Motivations of Adversarial Robustness
- security: We do not want a real-world adversary to succeed
- safety: Our application entails requirements on worst-case 

behaviour of 𝑓!

- …

- local sensitivity: We have some expectation about local behavior of 𝑓!
- generalization: The admissible perturbations ℬ are linked to the 

semantics of the input instance
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Adversarial Robustness in the Graph Domain

Reliable Graph Machine Learning

∃ ∈ ℬ s. t. argmax 𝑓! ≠ argmax 𝑓!

Does there exist a perturbed graph                in the neighborhood ℬ of 

the clean graph                for that, e.g., the model 𝑓! changes its prediction.

In this talk, ℬ most frequently describes the insertion/deletion of edges
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Certificate vs. 
Attack

Adversarial attacks are 
typically approximate:
Upper bound

Certificates typically require 
some relaxation:
Lower bound

Determining the true 
robustness is typically 
intractable
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correct
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Perspectives on Adversarial Robustness

Assessing Robustness
• Upper bound: Attacks
• Lower bound: Certification

(will not be covered today)

Improving Robustness
• Invariant model architectures
• Enhanced model architecture
• Robust/adversarial training
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Outline

1. Adversarial Robustness
2. Adversarial Attacks (Assessing Robustness)

a. Application: Combinatorial Optimization
b. Scalable Attacks for Structure Perturbations
c. Loss Functions for Interconnected Predictions: Node Classification

3. Improving Robustness
a. Invariant model architectures
b. Enhanced model architectures
c. Robust/adversarial training
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Combinatorial Optimization: TSP
From a problem instance, find a perturbed problem instance .𝒙 that 
maximizes the surrogate loss L 𝑓! .𝒙 , 2𝑌 .

Original problem instance 𝒙 Perturbed problem instance $𝒙

Ground truth 𝑌 and &𝑌
Prediction 𝑓! $𝒙
Adversarial point
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→ The admissible perturbations are linked to the semantics
Geisler et al. “Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.



SAT Perturbation Model
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Geisler et al. “Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.



Results (SAT)

Changing approx. 0.5% of the literals suffices to push the accuracy below 50%

For Δ = 0.05: 

Reliable Graph Machine Learning

Standard metric
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Geisler et al. “Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.
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Adversarial attack on a fixed GNN 𝑓! with loss ℒ and budget Δ:

Adversarial Attack for Structure Perturbations

Reliable Graph Machine Learning

⚡ Results in a discrete and non-convex optimization problem
⚡ A graph with 𝑛 nodes has 𝑛2 possible edges

→ Projected Randomized Block Coordinate Descent (PR-BCD)
(complexity 𝑂(Δ))

max ℒ 𝑓! s.t.  − " ≤ Δ
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
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Adversarial Attacks on Graph Neural Networks

max ℒ 𝑓! s.t.  − " ≤ Δ

Simon Geisler

𝐀 ∈ 0,1 4×4𝐀⊕ 𝐏

max
𝐏

ℒ 𝑓&(𝐀⊕ 𝐏, 𝐗)

𝐀⊕ 𝐏, 𝐗

①

if undirectedkeep binaryDetails:

-
6,8
𝐏6,8 ≤ Δ②:

s.t.   ∑',) 𝐏',) ≤ Δ ∧ 𝐏 ∈ 0,1 *×* ∧ 𝐏 = 𝐏,

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.

⊕: XOR



Adversarial Attacks on Graph Neural Networks
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max
𝐏

ℒ 𝑓!(𝐀⊕ 𝐏, 𝐗) s.t.   ∑𝐏 ≤ Δ ∧ 𝐏 ∈ 0,1 $×$ ∧ 𝐏 = 𝐏&

Simon Geisler 21

For the applicability of gradient-based optimization 
(1) 𝐏 ∈ 0,1 (×( is relaxed to 𝐏 ∈ 0,1 (×(	during the attack
(2) Each entry in 𝐏 ∈ [0,1](×( represents the probability of an edge flip
(3) After the attack, we sample from 𝐏 ∈ 0,1 (×( to obtain 𝐏 ∈ 0,1 (×(

Assumption: model can handle edge weights



→ Effectively relaxes the constraint from ⋅ * to ⋅ +

Alternative Argument for the Relaxation
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max ℒ 𝑓! s.t.  − " ≤ Δ

≈ max ℒ 𝑓! s.t.  − ' ≤ Δ

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Adversarial Attacks on Graph Neural Networks
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𝜗0 𝜗1 𝜗2 𝜗3

𝜗4 𝜗5 𝜗6

𝜗7 𝜗8

𝜗9

max
𝐏

ℒ 𝑓!(𝐀⊕ 𝐏, 𝐗) s.t.   ∑𝐏 ≤ Δ ∧ 𝐏 ∈ 0,1 $×$ ∧ 𝐏 = 𝐏&

𝐏 =
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⚡ Number of  “parameters“ scales 
with 𝒪(𝑛2) with number of nodes 𝑛.

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
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0
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Our Proposed Attack
Our variant of Projected Randomized Block Coordinate Descent 
(PR-BCD) that maintains a sparse parameter space throughout the optimization
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Example: Undirected Graph with 𝑛 = 5 nodes and budget Δ = 2
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0

1. Sample subspace 2. Gradient update 3. Projection (constr.) 4. Resample and repeat

max
𝐏

ℒ 𝑓!(𝐀⊕ 𝐏, 𝐗) s.t.   ∑𝐏 ≤ Δ ∧ 𝐏 ∈ 0,1 #×#
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Our Proposed Attack
Our variant of Projected Randomized Block Coordinate Descent 
(PR-BCD) that maintains a sparse parameter space throughout the optimization
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Example: Undirected Graph with 𝑛 = 5 nodes and budget Δ = 2max
𝐏

ℒ 𝑓!(𝐀⊕ 𝐏, 𝐗) s.t.   ∑𝐏 ≤ Δ ∧ 𝐏 ∈ 0,1 #×#

0.1 0.3 0.9

0.3

0.4 0.1

Sampling of final
discrete perturbations

1 1
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Scalable Attacks for Structure Perturbations
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Dataset # Nodes n Size (dense) Size (sparse)
Citeseer 2.1k 17.8MB 146.7kB
Cora ML 2.8k 31.9MB 319.2kB
PubMed 19.7k 1.6GB 1.8MB
arXiv * 169.3k 114.7GB 23.3MB
Products 2.5M 24.0TB 2.5GB
Papers 111.1M 49.3PB 32.31GB

Previous work

Ours (first-order attack)

→ We are the first to study adversarial robustness on such massive graphs.

* There are a few exceptions that study adversarial robustness for some special cases on graphs with similar size
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Q1: Are GNNs robust if applied to large graphs?
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Adversarial attack on GCN on Products (2.5 mio. nodes, 124 mio. edges): 
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



PR-BCD is available in PyTorch Geometric

Simon Geisler Reliable Graph Machine Learning 28



Local Constraints

What are reasonable / semantic preserving / … perturbations         ∈ ℬ ?
→ Open question and most certainly application specific

It is reasonable to design flexible attacks, e.g., also supporting local constraints:

In Geisler et al. “Adversarial Training for Graph Neural Networks” arXiv 2023 we 
extend the presented attack to also obey local constraints:
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Global constraint ∑?,@ 𝐏?,@ ≤ Δ(A) and local constraints* ∑@ 𝐏?,@ ≤ Δ?
B

* with symmetrized 𝐏Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Poisoning vs. Evasion:
Training time vs. test time attacks
So far, I have only illustrated test time attacks (evasion):

Training time attacks (poisoning):
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max ℒ 𝑓! s.t.  − * ≤ Δ

max ℒ 𝑓!∗ s.t.  − * ≤ Δ ∧ 𝜃∗ = Train( )

Backpropagate 
through the training
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Surrogate Loss
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PR-BCD is an efficient first-order optimization method to approximate

Surrogate losses for interconnected targets

max ℒ 𝑓! s.t.  − " ≤ Δ
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… but do we optimize for a sensible target with common losses?

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Surrogate Losses for “Global” Attacks
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.



Surrogate Losses for “Global” Attacks (binary)

Reliable Graph Machine Learning
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Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
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Transformers Meet Directed Graphs

Prediction: unknown
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (recall * precision) /

(recall * precision)

)

Prediction: accuracy
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (precision * recall) /

(precision * recall)

)

Prediction: precision
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & ~pred).sum()

recall = tp / (tp + fn)

fp = (~correct & pred).sum()

precision = tp / (tp + fp)

return (

2 * (precision * recall) /

(precision * recall)

)

Figure 11: State-of-the-art model on OGB Code2 is susceptible to meaningless permutations (see highlighted text) due to
OGB Code2’s graph construction. The code was minimally modified for better layout.

functions, where we reordered some statements s.t. the func-
tionality is preserved. In Fig. 11, we show that the state-of-
the-art model using OGB’s graph construction is susceptible
to these semantics-preserving permutations of the source
code. Moreover, the number of possible reorderings can be
surprisingly high. E.g., if constructing a data-flow DAG, the
F1 score function of Fig. 11 has 16 topological sorts. Fur-
ther considering commutativity for ==, &, +, and *, we find
4,096 possibilities to write this seemingly simple function.

Our graph construction maps all these 4,096 possibilities
to the very same directed graph. Our graph construction
is greatly inspired by Bieber et al. (2022), although they
also connect most instructions sequentially. While we do
avoid this sequentialism, we leverage their static code anal-
ysis for a graph construction that handles the sharp bits like
if-else, loops, and exceptions. The most significant differ-
ences to Bieber et al. (2022) are: (a) We construct a DAG
for each “block” (e.g., body of if statement) that reflects
the dependencies between instructions and then connect the
statements between blocks considering the control flow; (b)
we address the commutative properties for basic Python
operations via edge features (up to the usage of, e.g., two bi-
nary operations to add three terms); (c) we do not reference
the sequence of tokenized source code; (d) we omit the (in
our case) unnecessary “last read” edges; (e) we construct
the graph similarly to OGB Code2 for comparability. For ex-
ample, we aggregate child nodes containing only attributes
into their parent’s node attributes. We provide details and a
side-by-side comparison to an OGB Code2 graph in § M.

Assumptions. While the right equi-/invariances are task-
dependent, we argue that for high-level reasoning tasks,
including function name prediction or correctness predic-
tion, the mentioned reorderings should not affect the true
label. Nevertheless, e.g., for predicting the runtime of a
program, reorderings can have an impact. Moreover, we
assume that non-class-member methods are side-effect-free.
For example, this includes reordering print statements. Even
though this will result in a different output stream, we argue
that these differences are typically not vital. Moreover, since
we construct the graph with lexicographical static code anal-

ysis, we do this on a best-effort basis and do not capture
all dynamic runtime effects. Last, our eigenvector-based
positional encodings are only permutation equivariant in the
absence of repeated eigenvalues (see § D for details).

Empirical Evaluation. In Table 1, we report the results on
OGB Code2. Here we also compare to the Structure Aware
Transformer (SAT) of Chen et al. (2022). SAT is a hybrid
transformer w/ GNN for query and key and was the prior
state of the art. We illustrate the architecture in Fig. G.1b.
If we omit the GNN, we recover the vanilla transformer en-
coder Fig. 4a (plus degree-sensitive residual). We improve
the current state-of-the-art model with a number of small
tricks (i.e., no new positional encoding yet). Our SAT++ (w/
GNN) improves the F1-score by 1.66% (relatively 8.6%).
Besides smaller changes like replacing ReLU with GeLU
activations, we most notably (1) add dropout on the sparsely
populated node attributes and (2) offset the softmax score
to adjust for the class imbalance of the special tokens for
unknown words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (w/o global state). The edge and node embeddings
are updated sequentially with independently aggregated for-
ward and backward. Then, we concatenate the embeddings
we obtained after each message passing step and apply an
MLP with two layers. For details on the GNN see § G.

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. We do not re-
port results w/o GNN and solely w/ AST depth positional
encodings because this approach does not make use of the
enhanced graph structure. Our graph construction raises
the F1 score by almost 0.58% (relatively 2.8%), if using
the SAT++ architecture (w/ GNN) with AST depth encod-
ings. Note that the gain partially stems from the improved
edge features. In a dedicated experiment, we compare the
effect of our data-flow edges with the sequential edges of
Bieber et al. (2022) and find that our edges contribute to
an ⇡ 0.1% greater F1 score (model uses Magnetic Lapla-
cian encodings). Nevertheless, we want to emphasize that
our graph construction yields robustness gains w.r.t. certain
reorderings of statements in the source code (see Fig. 11).

8

How Do Transformers Encode Code?

Reliable Graph Machine Learning

def f1_score ( pred , label …

Tokenization:
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Transformers Meet Directed Graphs

Prediction: unknown
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (recall * precision) /

(recall + precision)

)

Prediction: accuracy
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (precision * recall) /

(precision + recall)

)

Prediction: precision
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & ~pred).sum()

recall = tp / (tp + fn)

fp = (~correct & pred).sum()

precision = tp / (tp + fp)

return (

2 * (precision * recall) /

(precision + recall)

)

Figure 11: State-of-the-art model on OGB Code2 is susceptible to meaningless permutations (see highlighted text) due to
OGB Code2’s graph construction. The code was minimally modified for better layout.

functions, where we reordered some statements s.t. the func-
tionality is preserved. In Fig. 11, we show that the state-of-
the-art model using OGB’s graph construction is susceptible
to these semantics-preserving permutations of the source
code. Moreover, the number of possible reorderings can be
surprisingly high. E.g., if constructing a data-flow DAG, the
F1 score function of Fig. 11 has 16 topological sorts. Fur-
ther considering commutativity for ==, &, +, and *, we find
4,096 possibilities to write this seemingly simple function.

Our graph construction maps all these 4,096 possibilities
to the very same directed graph. Our graph construction
is greatly inspired by Bieber et al. (2022), although they
also connect most instructions sequentially. While we do
avoid this sequentialism, we leverage their static code anal-
ysis for a graph construction that handles the sharp bits like
if-else, loops, and exceptions. The most significant differ-
ences to Bieber et al. (2022) are: (a) We construct a DAG
for each “block” (e.g., body of if statement) that reflects
the dependencies between instructions and then connect the
statements between blocks considering the control flow; (b)
we address the commutative properties for basic Python
operations via edge features (up to the usage of, e.g., two bi-
nary operations to add three terms); (c) we do not reference
the sequence of tokenized source code; (d) we omit the (in
our case) unnecessary “last read” edges; (e) we construct
the graph similarly to OGB Code2 for comparability. For ex-
ample, we aggregate child nodes containing only attributes
into their parent’s node attributes. We provide details and a
side-by-side comparison to an OGB Code2 graph in § M.

Assumptions. While the right equi-/invariances are task-
dependent, we argue that for high-level reasoning tasks,
including function name prediction or correctness predic-
tion, the mentioned reorderings should not affect the true
label. Nevertheless, e.g., for predicting the runtime of a
program, reorderings can have an impact. Moreover, we
assume that non-class-member methods are side-effect-free.
For example, this includes reordering print statements. Even
though this will result in a different output stream, we argue
that these differences are typically not vital. Moreover, since
we construct the graph with lexicographical static code anal-

ysis, we do this on a best-effort basis and do not capture
all dynamic runtime effects. Last, our eigenvector-based
positional encodings are only permutation equivariant in the
absence of repeated eigenvalues (see § D for details).

Empirical Evaluation. In Table 1, we report the results on
OGB Code2. Here we also compare to the Structure Aware
Transformer (SAT) of Chen et al. (2022). SAT is a hybrid
transformer w/ GNN for query and key and was the prior
state of the art. We illustrate the architecture in Fig. G.1b.
If we omit the GNN, we recover the vanilla transformer en-
coder Fig. 4a (plus degree-sensitive residual). We improve
the current state-of-the-art model with a number of small
tricks (i.e., no new positional encoding yet). Our SAT++ (w/
GNN) improves the F1-score by 1.66% (relatively 8.6%).
Besides smaller changes like replacing ReLU with GeLU
activations, we most notably (1) add dropout on the sparsely
populated node attributes and (2) offset the softmax score
to adjust for the class imbalance of the special tokens for
unknown words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (w/o global state). The edge and node embeddings
are updated sequentially with independently aggregated for-
ward and backward. Then, we concatenate the embeddings
we obtained after each message passing step and apply an
MLP with two layers. For details on the GNN see § G.

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. We do not re-
port results w/o GNN and solely w/ AST depth positional
encodings because this approach does not make use of the
enhanced graph structure. Our graph construction raises
the F1 score by almost 0.58% (relatively 2.8%), if using
the SAT++ architecture (w/ GNN) with AST depth encod-
ings. Note that the gain partially stems from the improved
edge features. In a dedicated experiment, we compare the
effect of our data-flow edges with the sequential edges of
Bieber et al. (2022) and find that our edges contribute to
an ⇡ 0.1% greater F1 score (model uses Magnetic Lapla-
cian encodings). Nevertheless, we want to emphasize that
our graph construction yields robustness gains w.r.t. certain
reorderings of statements in the source code (see Fig. 11).
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Transformers Meet Directed Graphs

Prediction: unknown
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (recall * precision) /
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)

Prediction: accuracy
def f1_score(pred, label):

correct = pred == label
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(precision + recall)

)

Prediction: precision
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & ~pred).sum()

recall = tp / (tp + fn)

fp = (~correct & pred).sum()

precision = tp / (tp + fp)

return (

2 * (precision * recall) /

(precision + recall)

)

Figure 11: State-of-the-art model on OGB Code2 is susceptible to meaningless permutations (see highlighted text) due to
OGB Code2’s graph construction. The code was minimally modified for better layout.

functions, where we reordered some statements s.t. the func-
tionality is preserved. In Fig. 11, we show that the state-of-
the-art model using OGB’s graph construction is susceptible
to these semantics-preserving permutations of the source
code. Moreover, the number of possible reorderings can be
surprisingly high. E.g., if constructing a data-flow DAG, the
F1 score function of Fig. 11 has 16 topological sorts. Fur-
ther considering commutativity for ==, &, +, and *, we find
4,096 possibilities to write this seemingly simple function.

Our graph construction maps all these 4,096 possibilities
to the very same directed graph. Our graph construction
is greatly inspired by Bieber et al. (2022), although they
also connect most instructions sequentially. While we do
avoid this sequentialism, we leverage their static code anal-
ysis for a graph construction that handles the sharp bits like
if-else, loops, and exceptions. The most significant differ-
ences to Bieber et al. (2022) are: (a) We construct a DAG
for each “block” (e.g., body of if statement) that reflects
the dependencies between instructions and then connect the
statements between blocks considering the control flow; (b)
we address the commutative properties for basic Python
operations via edge features (up to the usage of, e.g., two bi-
nary operations to add three terms); (c) we do not reference
the sequence of tokenized source code; (d) we omit the (in
our case) unnecessary “last read” edges; (e) we construct
the graph similarly to OGB Code2 for comparability. For ex-
ample, we aggregate child nodes containing only attributes
into their parent’s node attributes. We provide details and a
side-by-side comparison to an OGB Code2 graph in § M.

Assumptions. While the right equi-/invariances are task-
dependent, we argue that for high-level reasoning tasks,
including function name prediction or correctness predic-
tion, the mentioned reorderings should not affect the true
label. Nevertheless, e.g., for predicting the runtime of a
program, reorderings can have an impact. Moreover, we
assume that non-class-member methods are side-effect-free.
For example, this includes reordering print statements. Even
though this will result in a different output stream, we argue
that these differences are typically not vital. Moreover, since
we construct the graph with lexicographical static code anal-

ysis, we do this on a best-effort basis and do not capture
all dynamic runtime effects. Last, our eigenvector-based
positional encodings are only permutation equivariant in the
absence of repeated eigenvalues (see § D for details).

Empirical Evaluation. In Table 1, we report the results on
OGB Code2. Here we also compare to the Structure Aware
Transformer (SAT) of Chen et al. (2022). SAT is a hybrid
transformer w/ GNN for query and key and was the prior
state of the art. We illustrate the architecture in Fig. G.1b.
If we omit the GNN, we recover the vanilla transformer en-
coder Fig. 4a (plus degree-sensitive residual). We improve
the current state-of-the-art model with a number of small
tricks (i.e., no new positional encoding yet). Our SAT++ (w/
GNN) improves the F1-score by 1.66% (relatively 8.6%).
Besides smaller changes like replacing ReLU with GeLU
activations, we most notably (1) add dropout on the sparsely
populated node attributes and (2) offset the softmax score
to adjust for the class imbalance of the special tokens for
unknown words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (w/o global state). The edge and node embeddings
are updated sequentially with independently aggregated for-
ward and backward. Then, we concatenate the embeddings
we obtained after each message passing step and apply an
MLP with two layers. For details on the GNN see § G.

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. We do not re-
port results w/o GNN and solely w/ AST depth positional
encodings because this approach does not make use of the
enhanced graph structure. Our graph construction raises
the F1 score by almost 0.58% (relatively 2.8%), if using
the SAT++ architecture (w/ GNN) with AST depth encod-
ings. Note that the gain partially stems from the improved
edge features. In a dedicated experiment, we compare the
effect of our data-flow edges with the sequential edges of
Bieber et al. (2022) and find that our edges contribute to
an ⇡ 0.1% greater F1 score (model uses Magnetic Lapla-
cian encodings). Nevertheless, we want to emphasize that
our graph construction yields robustness gains w.r.t. certain
reorderings of statements in the source code (see Fig. 11).
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Prediction: unknown
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (
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(recall + precision)

)

Prediction: accuracy
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & pred).sum()

fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)

recall = tp / (tp + fn)

return (

2 * (precision * recall) /

(precision + recall)

)

Prediction: precision
def f1_score(pred, label):

correct = pred == label

tp = (correct & label).sum()

fn = (~correct & ~pred).sum()

recall = tp / (tp + fn)

fp = (~correct & pred).sum()

precision = tp / (tp + fp)

return (

2 * (precision * recall) /

(precision + recall)

)

Figure 11: State-of-the-art model on OGB Code2 is susceptible to meaningless permutations (see highlighted text) due to
OGB Code2’s graph construction. The code was minimally modified for better layout.

functions, where we reordered some statements s.t. the func-
tionality is preserved. In Fig. 11, we show that the state-of-
the-art model using OGB’s graph construction is susceptible
to these semantics-preserving permutations of the source
code. Moreover, the number of possible reorderings can be
surprisingly high. E.g., if constructing a data-flow DAG, the
F1 score function of Fig. 11 has 16 topological sorts. Fur-
ther considering commutativity for ==, &, +, and *, we find
4,096 possibilities to write this seemingly simple function.

Our graph construction maps all these 4,096 possibilities
to the very same directed graph. Our graph construction
is greatly inspired by Bieber et al. (2022), although they
also connect most instructions sequentially. While we do
avoid this sequentialism, we leverage their static code anal-
ysis for a graph construction that handles the sharp bits like
if-else, loops, and exceptions. The most significant differ-
ences to Bieber et al. (2022) are: (a) We construct a DAG
for each “block” (e.g., body of if statement) that reflects
the dependencies between instructions and then connect the
statements between blocks considering the control flow; (b)
we address the commutative properties for basic Python
operations via edge features (up to the usage of, e.g., two bi-
nary operations to add three terms); (c) we do not reference
the sequence of tokenized source code; (d) we omit the (in
our case) unnecessary “last read” edges; (e) we construct
the graph similarly to OGB Code2 for comparability. For ex-
ample, we aggregate child nodes containing only attributes
into their parent’s node attributes. We provide details and a
side-by-side comparison to an OGB Code2 graph in § M.

Assumptions. While the right equi-/invariances are task-
dependent, we argue that for high-level reasoning tasks,
including function name prediction or correctness predic-
tion, the mentioned reorderings should not affect the true
label. Nevertheless, e.g., for predicting the runtime of a
program, reorderings can have an impact. Moreover, we
assume that non-class-member methods are side-effect-free.
For example, this includes reordering print statements. Even
though this will result in a different output stream, we argue
that these differences are typically not vital. Moreover, since
we construct the graph with lexicographical static code anal-

ysis, we do this on a best-effort basis and do not capture
all dynamic runtime effects. Last, our eigenvector-based
positional encodings are only permutation equivariant in the
absence of repeated eigenvalues (see § D for details).

Empirical Evaluation. In Table 1, we report the results on
OGB Code2. Here we also compare to the Structure Aware
Transformer (SAT) of Chen et al. (2022). SAT is a hybrid
transformer w/ GNN for query and key and was the prior
state of the art. We illustrate the architecture in Fig. G.1b.
If we omit the GNN, we recover the vanilla transformer en-
coder Fig. 4a (plus degree-sensitive residual). We improve
the current state-of-the-art model with a number of small
tricks (i.e., no new positional encoding yet). Our SAT++ (w/
GNN) improves the F1-score by 1.66% (relatively 8.6%).
Besides smaller changes like replacing ReLU with GeLU
activations, we most notably (1) add dropout on the sparsely
populated node attributes and (2) offset the softmax score
to adjust for the class imbalance of the special tokens for
unknown words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (w/o global state). The edge and node embeddings
are updated sequentially with independently aggregated for-
ward and backward. Then, we concatenate the embeddings
we obtained after each message passing step and apply an
MLP with two layers. For details on the GNN see § G.

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. We do not re-
port results w/o GNN and solely w/ AST depth positional
encodings because this approach does not make use of the
enhanced graph structure. Our graph construction raises
the F1 score by almost 0.58% (relatively 2.8%), if using
the SAT++ architecture (w/ GNN) with AST depth encod-
ings. Note that the gain partially stems from the improved
edge features. In a dedicated experiment, we compare the
effect of our data-flow edges with the sequential edges of
Bieber et al. (2022) and find that our edges contribute to
an ⇡ 0.1% greater F1 score (model uses Magnetic Lapla-
cian encodings). Nevertheless, we want to emphasize that
our graph construction yields robustness gains w.r.t. certain
reorderings of statements in the source code (see Fig. 11).
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Motivation for Directed Graphs:
Encode symmetries
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many to one
(here: 4,096 → 1)

Note: Our construction via the 
Abstract Syntax Tree (AST) 

covers loops, exceptions, etc.

Simon Geisler 39

→ The model itself and the modelling of the input data greatly impact robustness 

Geisler et al. “Transformers Meet Directed Graphs.” ICML 2023.
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Scalable Robust Message Passing Aggregation

Reliable Graph Machine Learning

Graph Neural Networks` (GNN) message passing operation:

h;
(<) = σ < AGGREGATE < A;=, h=

<>? W < , ∀	𝑢 ∈ 𝒩 𝑣 ∪ 𝑣

E.g., a GCN: h;(<) ≈ σ < MEAN A;=, h=
<>? W < , ∀	𝑢 ∈ 𝒩 𝑣 ∪ 𝑣

Use a robust 
aggregation instead!

Simon Geisler 41

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
Geisler et al. “Reliable Graph Neural Networks via Robust Aggregation.” NeurIPS 2020.



Scalable Robust Message Passing Aggregation

Reliable Graph Machine Learning

Original neighbors Adversarial neighbors MeanTrue mean Soft Median

𝜇 𝐗 = softmax
−𝐝
𝑇

@
𝐗 = 𝐬@𝐗 ≈ argmin𝐱B∈𝕏 R𝐱 − 𝐱BOur Soft Median:

𝐝6 = R𝐱 − 𝐱6Distance to dim.-wise Median: 𝐗, 𝕏Input Embeddings:

Simon Geisler 47

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
Geisler et al. “Reliable Graph Neural Networks via Robust Aggregation.” NeurIPS 2020.



Scalable Robust Message Passing Aggregation

Reliable Graph Machine Learning

𝜇 𝐗 = softmax
−𝐝
𝑇

@
𝐗 = 𝐬@𝐗 ≈ argmin𝐱B∈𝕏 R𝐱 − 𝐱B

𝑇Temperature

Our Soft Median:

argmin𝐱B∈𝕏 R𝐱 − 𝐱B ∑𝐱B∈𝕏 𝐱B

Instance closest to the 
dim.-wise Median:

Sample
mean:

𝐝6 = R𝐱 − 𝐱6Distance to dim.-wise Median: 𝐗, 𝕏Input Embeddings:

Simon Geisler 48

Geisler et al. “Robustness of Graph Neural Networks at Scale.” NeurIPS 2021.
Geisler et al. “Reliable Graph Neural Networks via Robust Aggregation.” NeurIPS 2020.



Evaluation Pitfall: Non-Adaptive Attacks

Reliable Graph Machine Learning

What we should evaluate for model 𝑓! :

What is being evaluated instead (with surrogate model 𝑔! ≠ 𝑓!):

max ℒ 𝑓!

= argmax ℒ 𝑔!ℒ 𝑓!
**

Simon Geisler 52



How to Design Adaptive Attacks?

Reliable Graph Machine Learning

Many defenses 𝑓! disallow certain connections (e.g. Jaccard GCN, SVD GCN)

max ℒ 𝑓!

s.t.

“mask out” edges

Simon Geisler 53

Geisler et al. “Are Defenses for Graph Neural Networks Robust?” NeurIPS 2022.
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→ Our defense motivated by robust statistics seems to be the only effective option
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Adversarial Training in the Inductive Setting

We adapt the common benchmark setup for node-level predictions: 
• 5% of nodes are used for training
• 80% of nodes are unlabeled
• 5% of nodes are used for validation
• 10% of nodes are used for test
→ Semi-supervised inductive learning

Simon Geisler Reliable Graph Machine Learning 59

NOT included 
in training graph

Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Adversarial Training in the Inductive Setting

Regular training objective where we sample the graph extended by test 
nodes and test labels 𝒢D, 𝑦D ∼ 𝒟 𝒢 𝑦 	with test set 𝕀EFGH:

Adversarial training objective:

Simon Geisler Reliable Graph Machine Learning 60

min
!

𝔼
𝒢",*" ∼𝒟(𝒢,*)

∑/∈𝕀#$%&ℒ 𝑓! 𝒢2 / , 𝑦/2

min
!

𝔼
𝒢",*" ∼𝒟(𝒢,*)

max
3𝒢"∈ℬ 𝒢"

∑/∈𝕀#$%&ℒ 𝑓! <𝒢2
/
, 𝑦/2

Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Adversarial Training in the Inductive Setting

Simon Geisler Reliable Graph Machine Learning 61

min
!

𝔼
𝒢",*" ∼𝒟(𝒢,*)

max
3𝒢"∈ℬ 𝒢"

∑/∈𝕀#$%&ℒ 𝑓! <𝒢2 / , 𝑦/
2

≈ min
!

max
3𝒢∈ℬ 𝒢

∑/∈𝕀#'()*ℒ 𝑓! <𝒢 / , 𝑦/ +∑/∈𝕀+*,(-$,$.ℒ 𝑓! <𝒢 / , >𝑦/

Approximate using 
adversarial attack

Self-training, where T𝑦? are 
obtained, e.g., with an MLP

Next: 
Model

Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Model Choice for Adversarial Training

We propose to use flexible GNN models that fit in the framework

!
/01

2

𝛾/𝑳/𝑯 = 𝑽diag +𝑔 𝚲 .𝑽3𝑯 = 𝑽

+𝑔 𝜆4 0 ⋯	 0
0 +𝑔 𝜆5 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ +𝑔 𝜆6

.𝑽3𝑯

✔ A sufficiently flexible message passing scheme (we use 𝐾 = 10)
✔ We can interpret the learned message passing ∑/012 𝛾/𝑳/

Simon Geisler Reliable Graph Machine Learning 64

Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Robust Message Passing Characteristics
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-
EFG

H

𝛾E𝑳E𝑯 = 	 𝑽diag Z𝑔 𝚲 ]𝑽I𝑯

Polynomial interpretation: Spectral filter T𝑔 𝚲 	:

Setup:  Citeseer with 20% 
  of edges perturbed

Model:

Constraints: w/ local w/o local
Training: Regular Adversarial

Training
Regular

Adversarial
Adversarial

Constraints

w/ local
w/o local



Efficacy of Adversarial Training
Table 1: Comparison on Citeseer of regularly trained models, the state-of-the-art SoftMedian GDC
defense, and adversarially trained models (train ✏ = 20%). All numbers are in % and show the
difference to a standard GCN in the same setting, except for the standard GCN where we present
absolute values. The best model is highlighted in bold and grey background marks our robust diffusion.

Model
Adv. A. eval. ! LR-BCD PR-BCD LR-BCD PR-BCD Certifiable accuracy / sparse smoothing

trn. A. trn. # Clean ✏=0.1 ✏=0.25 Clean 3 add. 5 del.

GCN 7 - 72.0 ± 2.5 54.7 ± 2.8 51.7 ± 2.8 45.3 ± 3.4 38.0 ± 3.8 38.3 ± 11.5 1.7 ± 0.7 4.8 ± 1.5

GAT 7 - -3.6 ± 2.7 -3.9 ± 3.4 +0.5 ± 3.5 -15.9 ± 5.3 -2.3 ± 7.3 -14.0 ± 12.0 -1.7 ± 0.7 -4.8 ± 1.5
APPNP 7 - +0.2 ± 1.1 +1.7 ± 0.7 +1.9 ± 1.4 +3.0 ± 1.2 +2.2 ± 2.5 +8.9 ± 9.1 +31.2 ± 6.4 +31.6 ± 6.4

GPRGNN 7 - +2.2 ± 4.3 +4.2 ± 2.7 +3.6 ± 4.9 +5.5 ± 3.9 +7.9 ± 4.6 +17.9 ± 6.9 +42.4 ± 4.4 +41.3 ± 3.7
ChebNetII 7 - +1.1 ± 2.2 +5.8 ± 2.5 +5.0 ± 2.4 +10.4 ± 2.6 +7.6 ± 3.4 +24.6 ± 9.9 +55.6 ± 1.2 +54.0 ± 0.9
SoftMedian 7 - +0.9 ± 1.7 +9.5 ± 2.2 +9.3 ± 1.9 +16.2 ± 2.4 +14.6 ± 2.9 +25.2 ± 10.5 +60.3 ± 1.4 +57.5 ± 0.8

GCN X LR-BCD -0.2 ± 1.2 +7.8 ± 1.6 +5.9 ± 1.5 +10.9 ± 2.1 +8.1 ± 2.3 -3.0 ± 9.4 +10.7 ± 4.6 +13.1 ± 5.1
PR-BCD +0.0 ± 1.9 +6.9 ± 0.9 +5.3 ± 1.6 +8.6 ± 2.3 +5.8 ± 2.4 +4.2 ± 14.6 +10.1 ± 5.5 +11.4 ± 4.5

GAT X LR-BCD +0.8 ± 1.6 +5.9 ± 3.7 +9.0 ± 3.0 +8.4 ± 5.1 +13.1 ± 3.5 -2.0 ± 23.0 +1.4 ± 1.7 +4.0 ± 2.1
PR-BCD +1.1 ± 2.2 +8.9 ± 2.8 +13.2 ± 3.7 +10.3 ± 2.3 +21.8 ± 4.8 -10.1 ± 13.7 +1.2 ± 2.0 +2.8 ± 1.2

APPNP X LR-BCD -0.8 ± 1.3 +7.6 ± 1.6 +5.6 ± 1.9 +11.1 ± 1.9 +8.3 ± 3.6 +21.7 ± 9.5 +41.3 ± 2.9 +44.1 ± 1.2
PR-BCD -0.2 ± 2.2 +6.2 ± 2.3 +5.5 ± 3.1 +9.0 ± 2.9 +6.5 ± 3.8 +19.3 ± 7.2 +41.0 ± 3.8 +41.9 ± 3.0

LR-BCD +1.7 ± 3.0 +15.7 ± 3.6 +13.6 ± 3.5 +24.8 ± 4.2 +22.9 ± 4.3 +34.0 ± 11.5 +67.4 ± 1.5 +65.0 ± 2.5
GPRGNN X

PR-BCD +0.6 ± 3.6 +15.0 ± 3.6 +15.9 ± 4.2 +23.2 ± 4.3 +26.3 ± 5.4 +32.9 ± 11.8 +69.0 ± 1.5 +65.9 ± 2.3

LR-BCD +3.7 ± 1.4 +11.5 ± 1.6 +11.5 ± 1.1 +16.4 ± 1.9 +16.0 ± 2.9 +31.5 ± 12.7 +62.3 ± 1.9 +59.8 ± 2.5
ChebNetII X

PR-BCD +3.4 ± 1.7 +13.2 ± 2.2 +14.3 ± 1.2 +19.5 ± 1.6 +19.8 ± 2.3 +30.7 ± 13.2 +65.4 ± 2.6 +62.9 ± 3.7

add the respective evaluation set. This way, we avoid the evaluation flaw of prior work since the model
cannot achieve robustness via “memorizing” the predictions on the clean graph. We obtain inductive
splits randomly, except for OGB arXiv [11], which comes with a split. In addition to the commonly
sampled 20 nodes per class for both (labeled) training and validation, we sample a stratified test set
consisting of 10% of all nodes. The remaining nodes are used as (unlabeled) training nodes.

Setup. We study the citation networks Cora, Cora-ML, CiteSeer [23], Pubmed [24], and OGB
arXiv [11] using GPRGNN, ChebNetII, GCN, APPNP, and GAT [25]. Further, we compare to the
state-of-the-art evasion defense Soft Median GDC [17]. We apply adversarial training (see Section 2
and Appendix B.5) using both PR-BCD that only constraints perturbations globally and our LR-BCD
that also allows for local constraints. Moreover, we use adversarial training in conjunction with
self-training. Due to the inductive split, this does not bias results. We use the tanh margin attack loss
of [17] and do not generate adversarial examples for the first 10 epochs (warm-up). We evaluate robust
generalization on the test set using L/PR-BCD, which corresponds to adaptive attacks. Adaptive
attacks are the gold standard in evaluating empirical robustness because they craft model-specific
perturbations [26]. We use ✏ to parametrize the global budget � = b✏ ·

P
u2A du/2e relative to the

degree du for the set of targeted nodes A. We find that �(l)
u = bdu/2c is a reasonable local budget for

all datasets but arXiv where we use �(l)
u = bdu/4c. We report averaged results with the standard error

of the mean over three random splits. We use GTX 1080Ti (11 Gb) GPUs for all experiments but arXiv,
for which we use a V100 (40 GB). For details see Appendix B. We discuss limitations in Appendix F
and provide code at https://www.cs.cit.tum.de/daml/adversarial-training/.

Certifiable robustness. We use the model-agnostic randomized/sparse smoothing certificate of
Bojchevski et al. [27] to also quantify certifiable robustness. Sparse smoothing creates a randomized
ensemble given a base model f✓ s.t. the majority prediction of the ensemble comes with guarantees.
For the randomization, we follow Bojchevski et al. [27] and uniformly drop edges with p� = 0.6
as well as add edges with p+ = 0.01. Sparse smoothing then returns if a node-level prediction is
certified (does not change) for the desired deletion radius r� or addition radius r+. The guarantee
holds in a probabilistic sense with significance level ↵. We report the certified accuracy �(r�, r+) that
aggregates correct and certifiable predictions over all nodes. We choose ↵ = 5% and obtain 100,000
random samples. For simplicity, we report in the main part the certified accuracies �(r� = 0, r+ = 0),
�(5, 0), and �(0, 3). See Appendix D.4 for more details and results.

Finding I: Adversarial training is an effective defense against structure perturbations. This
is apparent from the results in Table 1, where we compare the empirical and certifiable robustness
between the aforementioned models on Citeseer. Our adversarially trained robust diffusion models
GPRGNN and ChebNetII outperform the other baselines both in empirical and certifiable robustness.
This includes the state-of-the-art defense Soft Median, which we outperform with a comfortable
margin. Thus, we close the gap in terms of the efficacy of adversarial training in the image domain
vs. structure perturbations. Notably, the increased robustness does not imply a lower clean accuracy.
For example, our LR-BCD adversarially trained GPRGNN achieves a 1.7% higher clean accuracy
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Adversarial attacks:
LR-BCD: w/ local constraints
PR-BCD: w/o local constraints

Dataset: Citeseer

Geisler et al. “Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Outline

1. Adversarial Robustness
2. Adversarial Attacks (Assessing Robustness)

a. Application: Combinatorial Optimization
b. Scalable Attacks for Structure Perturbations
c. Loss Functions for Interconnected Predictions: Node Classification

3. Improving Robustness
a. Invariant model architectures
b. Enhanced model architectures
c. Robust/adversarial training
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Outline

1. Adversarial Robustness
2. Graph Neural Networks
3. Assessing Robustness

a. Certification
b. Adversarial Attacks

4. Improving Robustness
a. Enhanced model architecture
b. Invariant model architectures
c. Robust/adversarial training
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Strategy I: 
“White-box” certificates

Classes of Certificates

71

Strategy II:
“Black-box” certificates

G
e
i
s
l
e
r

+ Can be applied to any classifier for 
discrete data (including all GNNs) out 
of the box

- Bounds might be less tight since 
model structure not exploited

+ Take advantage of the problem 
structure for accurate certificates, 
i.e. tight lower bounds

- Special derivation for every model 
required, i.e. expensive development

Zügner et al. Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations. KDD 2020
Bojchevski at al. Certifiable Robustness to Graph Perturbations. NeurIPS 2019
Zügner et al. Certifiable Robustness and Robust Training for Graph Convolutional Networks. KDD 2019

Is there something in between?
Strategy III:  “Gray-box” certificates

Schuchardt et al. Localized Randomized Smoothing for Collective Robustness Certification. ICLR 2023
Schuchardt et al. Collective Robustness Certificates: Exploiting Interdependence in GNNs. ICLR 2021

Bojchevski et al. Efficient Robustness Certificates for Discrete Data. ICML 2020



- Enhance black-box by general model properties
• message-passing princple
• invariances
• …

Idea: Gray-Box Certificates

72

Class A
Class B→

Adversarial node Adversarial message

Schuchardt, Günnemann. Invariance-Aware Randomized Smoothing CerTficates. NeurIPS 2022
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- Enhance black-box by general model properties
• message-passing princple
• invariances
• …

Idea: Gray-Box Certificates
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Class A

Adversarial node Adversarial message

Schuchardt, Günnemann. Invariance-Aware Randomized Smoothing Certificates. NeurIPS 2022
Scholten, Schuchardt, Geisler, Bojchevski, Günnemann. Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks. NeurIPS 2022

Deleted edge Intercepted message
Smoothed GAT on Cora-ML



• Often: classifier that simultaneously outputs multiple predictions give a single input
• node classification, image segmentation, named-entity recognition

• Problem: “Standard” certificates care about a single prediction only

• Collective robustness certificate à number of predictions
that are simultaneously guaranteed to remain stable

Individual vs. Collective Certificates

74

Schuchardt et al. Collective Robustness Certificates: Exploiting Interdependence in GNNs. ICLR 2021



Task: Node-Level Classification

Results
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Figure 3: Comparison of certified ratios for
GATs, GCNs and RGCNs on Cora-ML under
varying rXdel for our (solid lines) and the naive
(dashed lines) collective certificate. The certified
robustness of both models is similar.
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Figure 4: Certified ratios for GCNs on Cite-
seer, under varying rXadd and with Zügner &
Günnemann (2019) as the base certificate. Our
certificate (solid lines) yields larger certified ra-
tios than the naive collective certificate (dashed
lines).
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Figure 5: Certified ratios for smoothed GCNs
on Cora-ML, under varying rAdel and rAdel,loc .
Stricter local budgets yield larger certified ratios.
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Figure 6: Certified ratios for smoothed GCNs on
Cora-ML, under varying rXdel and n attackers.
The certified ratios remain constant and non-zero
for large rXdel .
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nodes, ∼8k edges) and
smoothed GCN model
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Transformers Meet Directed Graphs
TL;DR.
1. How to generalize transformers 

to directed graphs?
→ Direction-aware positional encodings:

a) Spectral encodings: Magnetic Laplacian
b) Directional random walks

2.  Directed graphs are important for many applications
→ Appropriate modeling of input modalities:

a) If ignoring the direction, the model might sacrifice expressivity
b) We can leverage symmetries in the input domain

Reliable Graph Machine Learning

Space of directed Graphs

Transformer
Previous

Graph Transformer

Sequences Undirected
Graphs

Ours
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Sinusoidal Encodings

Reliable Graph Machine Learning

Multi-Head
Attention

Forward 
Stack

+Positional 
Encoding

Positional 
Encoding 
of node 𝑣
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Sinusoidal Encodings 

Reliable Graph Machine Learning

Sinusoidal 
encodings 

Discrete 
Fourier 

Transformationrelated to
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Signal Processing: DFT

Reliable Graph Machine Learning

• Sinusoidal Positional 
Encodings PE(GIJ) ∈ ℝ(×K

• Positional encodings inspired by Discrete Fourier Transformation (DFT):

PE;,8KL/N
(OPQ) = sin 𝑣 ⋅ 1/10, 000N8/L

Z𝑥8 = -
;FG

4>?

𝑥; cos 𝑣 ⋅
2𝜋
𝑛
𝑗 − 𝑖 ⋅ sin 𝑣 ⋅

2𝜋
𝑛
𝑗 = -

;FG

4>?

𝑥;𝑒
>6 NR;8

4

PE;,8
(OPQ) = cos 𝑣 ⋅ 1/10, 000N8/L

d - # of features/
embedding dim.

2π10,000 - largest wave length
v - node index/position
j - frequency index
𝑥 - signal (spatial domain)
Z𝑥 - signal (spectral domain)
𝑛 - sequence length
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Sinusoidal Encodings ↔ Laplacian Eigenvectors

Reliable Graph Machine Learning

Transformers Meet Directed Graphs 2

this graph correspond to different but semantically equiv-
alent sequences of operations. Thus, directed graphs can
drastically reduce the effective input dimensionality. More-
over, we show that ignoring the edge directions maps both
correct and incorrect sorting networks to the same undi-
rected graph, losing critical information.

Interestingly, representing source code as a sequence is the
de facto standard (Li et al., 2022; Feng et al., 2020; Chen
et al., 2021; OpenAI, 2022). Even graph-based represen-
tations of code (Allamanis et al., 2018; Hu et al., 2020;
Cummins et al., 2020; Guo et al., 2021; Bieber et al., 2022)
only enrich sequential source code, e.g., with an Abstract
Syntax Tree (AST). The insights above motivate us to re-
think the graph construction for source code (§ 7), which
not only boosts performance but makes the model invariant
w.r.t. to certain meaningless reorderings of statements.

Contributions: [I] We make the connection between si-
nusoidal positional encodings and the eigenvectors of the
Laplacian explicit (§ 2). [II] We propose spectral positional
encodings that also generalize to directed graphs (§ 3). [III]
We extend random walk positional encodings to directed
graphs (§ 4). [IV] As a plausibility check, we assess the
predictiveness of structure-aware positional encodings for a
set of graph distances (§ 5). [V] We introduce the task of
predicting the correctness of sorting networks, a canonical
ambiguity-free application where directionality is essential
(§ 6). [VI] We quantify the benefits of modeling a sequence
of program statements as a directed graph and rethink the
graph construction for source code to boost predictive per-
formance and robustness (§ 6 & 7). [VII] We set a new
state on the art on the OGB Code2 dataset (2.85% higher F1
score, 14.7% relatively) for function name prediction (§ 7).

2. Sinusoidal and Laplacian Encodings
Due to the permutation equivariant attention, we typically in-
troduce a domain-specific inductive bias with Positional En-
codings (PEs). For example, Vaswani et al. (2017) proposed
sinusoidal positional encodings for sequences along with the
transformer architecture. It is commonly argued (Bronstein
et al., 2021; Dwivedi & Bresson, 2021) that the eigenvectors
of the (combinatorial) Laplacian generalize the sinusoidal
positional encodings (see Fig. 2) to graphs, due to their
relationship via the Graph Fourier Transformation (GFT)
and Discrete Fourier Transformation (DFT) (Smith, 1999).
Even though sinusoidal positional encodings capture the
direction, eigenvectors of the Laplacian do not. But why is
this the case? To understand differences and commonalities,
we next contrast sinusoidal encodings, DFT, and Laplacian
eigenvectors for a sequence (Fig. 1a,1b).

Sequence encodings. Specifically, sinusoidal encod-
ings (Vaswani et al., 2017) form a dmodel-dimensional em-

(a) Sinusoidal (b) Eigenvec. of Laplacian

Figure 2: (a) Sinusoidal encodings (sin components top and
cos below) with denominator 1, 0002j/dmodel and (dmodel =
100. (b) Lap. eigenvec. of sequence Fig. 1b of len. n = 100.

bedding of token u’s integer position in the sequence
using cosine PE(sin)

u,2j := cos(u/10,0002j/dmodel) and sinus
PE(sin)

u,2j+1 := sin(u/10,0002j/dmodel) waves of varying frequen-
cies with j 2 {0, 1, ..., dmodel/2 � 1}. Analogously, the DFT
could be used to define positional encodings:

Xj :=
n�1P
u=0

xv

h
cos

⇣2⇡
n
ju

⌘

| {z }
PE(DFT)

u,2j

�i · sin
⇣2⇡
n
ju

⌘

| {z }
PE(DFT)

u,2j+1

i
(1)

Here X corresponds to signal x in the frequency domain.
In contrast to the DFT, sinusoidal encodings (a) sweep the
frequencies using a geometric series instead of linear; (b)
also contain frequencies below 1/n; and (c) have dmodel com-
ponents instead of 2n (i.e. 0  j < n in Eq. 1).

Graphs generalize sequences to sets of tokens/nodes with
arbitrary connections. In a graph G = (V,E), the m edges E
represent connections between the n nodes V . Equivalently,
the adjacency matrix A 2 {0, 1}n⇥n is Au,v = 1 if (u, v) 2
E and zero otherwise (see § E for weighted graphs). We use
X

(n) for node features and X
(m) for edge features.

Eigenvectors of Laplacian. A “Graph Fourier Transforma-
tion” (GFT) can be defined via the eigendecomposition of
the combinatorial Laplacian L = �⇤��1, with diagonal
matrix ⇤ of eigenvalues and orthogonal matrix � of eigen-
vectors (see § B for details on GFT). Similarly to the DFT,
� can be used as positional encodings. The real, symmetric,
and positive semi-definite unnormalized Laplacian LU as
well as degree-normalized Laplacian LN are defined as:

LU := Ds�As (2) LN := I � (D�1/2
S ASD

�1/2
S ) (3)

with the diagonal degree matrix Ds of the symmetrized ad-
jacency matrix As = A _A

>. Symmetrization is required
s.t. L is guaranteed to be diagonalizable and that � 2 Rn⇥n

forms an orthogonal basis, which entails important prop-
erties of the GFT (see § C). We assume eigenvalues and
eigenvectors to be ordered: 0  �0  �1  · · ·  �n�1.
We call �0 or ⇤0,0 the first eigenvalue and �0 or �:,0 the
first eigenvector (that reflects the lowest frequency).

Sinusoidal 
encodings 

Discrete 
Fourier 

Transformation

Graph Fourier Transformation: 
Eigenvectors of 

combinatorial/graph Laplacianrelated to related to

Assumption: graphs are undirected
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Signal Processing: DFT

Reliable Graph Machine Learning

Circular Convolution:

with DFT l𝒙 = ]𝑺I𝒙, 
IDFT 𝐲 = 𝑺l𝒚, 
Fourier sinusoids 𝑺 ∈ ℂ4×4, and
diagonal filter diag(rℎ 𝜔 ) ∈ ℝ4×4.

𝒚 = IDFT DFT ℎ(𝜔) ∗ 𝒙
= IDFT rℎ(𝜔) ⋅ DFT 𝒙
= 1/𝑛 𝑺 diag(rℎ 𝜔 ) ]𝑺I𝒙

]𝑺I =

1 1 1 ⋯ 1
1 𝜔 𝜔N ⋯ 𝜔4>?
1 𝜔N 𝜔S ⋯ 𝜔N(4>?)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔4>? 𝜔N(4>?) ⋯ 𝜔 4>? "

diag(rℎ 𝜔 ) =

ℎ 𝜔G 0 ⋯ 0
0 ℎ 𝜔? ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ 𝜔4>?

with 𝜔 = 𝑒
"# $%&
'
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Signal Processing: DFT ↔ GFT

Reliable Graph Machine Learning

Convolution on graphs:

with eigendecomposition 𝑳 = 𝑽𝚲]𝑽I

of graph Laplacian 𝑳 = 𝑫 − 𝑨

with adjacency matrix 𝑨 ∈ ℝTG4×4

and degree matrix 𝑫 = 𝑑𝑖𝑎𝑔(𝑨𝟏)

𝒚 = IGFT GFT 𝑔(𝚲) ∗ 𝒙
= IGFT Z𝑔(𝚲) ⋅ GFT 𝒙
= 𝑽 diag( Z𝑔 𝚲 ) ]𝑽I𝒙
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with DFT l𝒙 = ]𝑺I𝒙, 
IDFT 𝐲 = 𝑺l𝒚, 
Fourier sinusoids 𝑺 ∈ ℂ4×4, and
diagonal filter diag(rℎ 𝜔 ) ∈ ℝ4×4.

𝒚 = IDFT DFT ℎ(𝜔) ∗ 𝒙
= IDFT rℎ(𝜔) ⋅ DFT 𝒙
= 1/𝑛 𝑺 diag(rℎ 𝜔 ) ]𝑺I𝒙



Reliable Graph Machine Learning

Transformers Meet Directed Graphs 2

this graph correspond to different but semantically equiv-
alent sequences of operations. Thus, directed graphs can
drastically reduce the effective input dimensionality. More-
over, we show that ignoring the edge directions maps both
correct and incorrect sorting networks to the same undi-
rected graph, losing critical information.

Interestingly, representing source code as a sequence is the
de facto standard (Li et al., 2022; Feng et al., 2020; Chen
et al., 2021; OpenAI, 2022). Even graph-based represen-
tations of code (Allamanis et al., 2018; Hu et al., 2020;
Cummins et al., 2020; Guo et al., 2021; Bieber et al., 2022)
only enrich sequential source code, e.g., with an Abstract
Syntax Tree (AST). The insights above motivate us to re-
think the graph construction for source code (§ 7), which
not only boosts performance but makes the model invariant
w.r.t. to certain meaningless reorderings of statements.

Contributions: [I] We make the connection between si-
nusoidal positional encodings and the eigenvectors of the
Laplacian explicit (§ 2). [II] We propose spectral positional
encodings that also generalize to directed graphs (§ 3). [III]
We extend random walk positional encodings to directed
graphs (§ 4). [IV] As a plausibility check, we assess the
predictiveness of structure-aware positional encodings for a
set of graph distances (§ 5). [V] We introduce the task of
predicting the correctness of sorting networks, a canonical
ambiguity-free application where directionality is essential
(§ 6). [VI] We quantify the benefits of modeling a sequence
of program statements as a directed graph and rethink the
graph construction for source code to boost predictive per-
formance and robustness (§ 6 & 7). [VII] We set a new
state on the art on the OGB Code2 dataset (2.85% higher F1
score, 14.7% relatively) for function name prediction (§ 7).

2. Sinusoidal and Laplacian Encodings
Due to the permutation equivariant attention, we typically in-
troduce a domain-specific inductive bias with Positional En-
codings (PEs). For example, Vaswani et al. (2017) proposed
sinusoidal positional encodings for sequences along with the
transformer architecture. It is commonly argued (Bronstein
et al., 2021; Dwivedi & Bresson, 2021) that the eigenvectors
of the (combinatorial) Laplacian generalize the sinusoidal
positional encodings (see Fig. 2) to graphs, due to their
relationship via the Graph Fourier Transformation (GFT)
and Discrete Fourier Transformation (DFT) (Smith, 1999).
Even though sinusoidal positional encodings capture the
direction, eigenvectors of the Laplacian do not. But why is
this the case? To understand differences and commonalities,
we next contrast sinusoidal encodings, DFT, and Laplacian
eigenvectors for a sequence (Fig. 1a,1b).

Sequence encodings. Specifically, sinusoidal encod-
ings (Vaswani et al., 2017) form a dmodel-dimensional em-

(a) Sinusoidal (b) Eigenvec. of Laplacian

Figure 2: (a) Sinusoidal encodings (sin components top and
cos below) with denominator 1, 0002j/dmodel and (dmodel =
100. (b) Lap. eigenvec. of sequence Fig. 1b of len. n = 100.

bedding of token u’s integer position in the sequence
using cosine PE(sin)

u,2j := cos(u/10,0002j/dmodel) and sinus
PE(sin)

u,2j+1 := sin(u/10,0002j/dmodel) waves of varying frequen-
cies with j 2 {0, 1, ..., dmodel/2 � 1}. Analogously, the DFT
could be used to define positional encodings:

Xj :=
n�1P
u=0

xv

h
cos

⇣2⇡
n
ju

⌘

| {z }
PE(DFT)

u,2j

�i · sin
⇣2⇡
n
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⌘

| {z }
PE(DFT)

u,2j+1

i
(1)

Here X corresponds to signal x in the frequency domain.
In contrast to the DFT, sinusoidal encodings (a) sweep the
frequencies using a geometric series instead of linear; (b)
also contain frequencies below 1/n; and (c) have dmodel com-
ponents instead of 2n (i.e. 0  j < n in Eq. 1).

Graphs generalize sequences to sets of tokens/nodes with
arbitrary connections. In a graph G = (V,E), the m edges E
represent connections between the n nodes V . Equivalently,
the adjacency matrix A 2 {0, 1}n⇥n is Au,v = 1 if (u, v) 2
E and zero otherwise (see § E for weighted graphs). We use
X

(n) for node features and X
(m) for edge features.

Eigenvectors of Laplacian. A “Graph Fourier Transforma-
tion” (GFT) can be defined via the eigendecomposition of
the combinatorial Laplacian L = �⇤��1, with diagonal
matrix ⇤ of eigenvalues and orthogonal matrix � of eigen-
vectors (see § B for details on GFT). Similarly to the DFT,
� can be used as positional encodings. The real, symmetric,
and positive semi-definite unnormalized Laplacian LU as
well as degree-normalized Laplacian LN are defined as:

LU := Ds�As (2) LN := I � (D�1/2
S ASD

�1/2
S ) (3)

with the diagonal degree matrix Ds of the symmetrized ad-
jacency matrix As = A _A

>. Symmetrization is required
s.t. L is guaranteed to be diagonalizable and that � 2 Rn⇥n

forms an orthogonal basis, which entails important prop-
erties of the GFT (see § C). We assume eigenvalues and
eigenvectors to be ordered: 0  �0  �1  · · ·  �n�1.
We call �0 or ⇤0,0 the first eigenvalue and �0 or �:,0 the
first eigenvector (that reflects the lowest frequency).

Symmetrization → real and symmetric Laplacian

Laplacian Eigenvectors:
w/o symmetrization ↔ w/ symmetrization

𝑳 ≔ 𝑫− 𝑨 = 𝑽𝚲𝑽̀L 𝑨 ∈ ℝTG4×4 adjacency matrix 
𝑫 diagonalized degree matrix

Laplacian
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Reliable Graph Machine Learning

Magnetic Laplacian

𝑳 M : = 𝑫N − 𝑨N ⊙ exp 𝑖𝚯 M
𝑨U ∈ ℝTG4×4 symmetrized adjacency matrix 
𝑫U	 diagonalized degree matrix
𝑞 potential (hyperparameter)
exp/⊙ element-wise exp./product
𝑖 = −1 complex number

The Hermitian (𝑳 M = 𝑳 M
L
) Magnetic Laplacian encodes edge 

direction using complex numbers 

ΘP,Q
M : = 2𝜋𝑞 𝐴P,Q − 𝐴Q,P
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Magnetic Laplacian:
Directed ↔ Undirected
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𝑳 M : = 𝑫N − 𝑨N ⊙ exp 𝑖 2𝜋𝑞 𝑨 − 𝑨L

𝑳 +/S : =

1 −𝑖
𝑖 2 −𝑖

𝑖 2 −𝑖
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𝑖 1
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Transformers Meet Directed Graphs 8

Table 1: Results on the Open Graph Benchmark Code2
dataset. The first two rows correspond to prior work. All
other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.

Position. Enc. GNN Test F1-Score Val. F1-Score

Se
qu

en
.

AST depth

7 16.70±0.05 15.46±0.06

Pr
ev

.

3 19.37±0.09 17.73±0.07
7 19.09±0.10 17.68±0.06

O
ur

s

3 21.03±0.07 19.38±0.07

D
at

a-
flo

w AST depth 3 21.61±0.12 19.79±0.11

Random walk 7 19.34±0.08 17.96±0.05
3 21.32±0.12 19.58±0.08

Magnetic Lap. 7 19.43±0.03 17.83±0.05
3 22.22±0.10 20.44±0.06

Table 2: Results on the Open Graph Benchmark Code2
dataset. The first two rows correspond to prior work. All
other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.

Position. Enc. GNN Test F1-Score Val. F1-Score

Se
qu

en
.

AST depth

7 16.70±0.05 15.46±0.06
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w AST depth 3 21.61±0.12 19.79±0.11

Random walk 7 19.34±0.08 17.96±0.05
3 21.32±0.12 19.58±0.08

Magnetic Lap. 7 19.43±0.03 17.83±0.05
3 22.22±0.10 20.44±0.06

activations, we most notably (1) add dropout on the sparsely
populated node attributes and, (2) offset the softmax score
to adjust for class imbalance of the special tokens for un-
known words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (excluding a global state). The edge and node em-
beddings are updated sequentially and forward as well as
backward messages are aggregated independently. Then, a
Multi-Layer Perceptron (MLP) with two layers processes
the concatenated embeddings (twice lower dimensionality
as the transformer).

Our graph construction (“data-flow” in Table 2) consis-
tently increases the predictive performance. For example,
with the AST depth positional encodings and the SAT++
architecture (w/ GNN) the performance improves by almost
0.58% (relatively 2.8%). Moreover, we want to emphasize
that due to the graph construction, we additionally gain ro-
bustness w.r.t. certain reorderings of statements in the source
code. We do not report results w/o GNN and solely w/ AST
depth positional encodings because this approach does not
make use of the enhanced graph structure.

Hybrid. The Magnetic Laplacian also helps in the hybrid
transformer GNN architecture. Our SAT++ with Magnetic
Laplacian positional encodings marks the new state of the

art on the Code2 dataset, outperforming SAT by 2.85%
(relatively 14.7%). Surprisingly the Random Walk positional
encodings even slightly decay performance. For the Code2
graphs, the GNN for query and key appears to be of great
importance. We hypothesize that this is due to the sparsely
populated node features. Only a few nodes are attributed
and, additionally, the permitted vocabulary is restrictive.
The local message passing might spread the information to
neighboring nodes to adjust for this sparseness. Moreover,
w/o GNN we do not make use of edge features.

Dataset challenges. The node attributes (e.g. variable
names) and function name are only lightly preprocessed. For
example, for perfect performance, one needs to distinguish
singular and plural method names. Although singular/plural
semantically make a difference, the naming consistency is
lacking for the 450k functions taken from github. For com-
parability, we do not adjust the dataset accordingly.

8. Related Work
Prior work on positional encodings includes traditional
graph metrics, like shortest path distances (Guo et al., 2021).
Similar measures are used in the relative positional encod-
ings of Zügner et al. (2021). Related to the distance from a
node to the the AST root node in the OGB Code2 dataset
(see § 7), Luo (2022) proposes sinusoidal positional encod-
ings for DAGs leveraging their partial order. An alternative
form of spectral encodings, based on Singular Value Decom-
position (SVD), was used for positional encodings (Hussain
et al., 2022). The authors argue that this encodings also
subsumes directed graphs, however, they do not verify this
choice and the SVD of the adjacency matrix has undesirable
properties (see § D.4). Moreover, we include a discussion
of Laplacians for directed graphs in § C. For an in-depth
overview and a how-to for graphs transformers, we refer
to Min et al. (2022) and Rampášek et al. (2022). They also
provide an overview of graph transfomrmer that rethink at-
tention architectures for structure-awareness like (Dwivedi
& Bresson, 2021; Mialon et al., 2021; Chen et al., 2022;
Kim et al., 2022; Hussain et al., 2022; Diao & Loynd, 2022).

Source Code Representation. There are many attempts
on enriching source code in a graph-structured manner for
machine learning (Allamanis et al., 2018; Cummins et al.,
2020; Guo et al., 2021; Bieber et al., 2022). However, they
all retain the sequentialism of the underlying source code.
As we see in Fig. 11, this can lead to a fragile representation
w.r.t. to semantically meaningless reorderings. Such reorder-
ings are a novel perspective on the robustness of models
for source code (e.g. see (Jha & Reddy, 2022; Yefet et al.,
2020)) and similar properties can be important for mod-
els operating on logical expressions (Geisler et al., 2022).
However, the relationship between a directed graph and its
sequentializations is well known in, e.g., task scheduling.

Function Name Prediction:
Open Graph Benchmark Code 2

Reliable Graph Machine Learning

State of 
the art

Ours

→ We outperform previous state of the art by 2.85% (relatively 14.7%) 
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Table 1: Results on the Open Graph Benchmark Code2
dataset. The first two rows correspond to prior work. All
other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.
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activations, we most notably (1) add dropout on the sparsely
populated node attributes and, (2) offset the softmax score
to adjust for class imbalance of the special tokens for un-
known words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (excluding a global state). The edge and node em-
beddings are updated sequentially and forward as well as
backward messages are aggregated independently. Then, a
Multi-Layer Perceptron (MLP) with two layers processes
the concatenated embeddings (twice lower dimensionality
as the transformer).

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. For example,
with the AST depth positional encodings and the SAT++
architecture (w/ GNN) the performance improves by almost
0.58% (relatively 2.8%). Moreover, we want to emphasize
that due to the graph construction, we additionally gain ro-
bustness w.r.t. certain reorderings of statements in the source
code. We do not report results w/o GNN and solely w/ AST
depth positional encodings because this approach does not
make use of the enhanced graph structure.

Hybrid. The Magnetic Laplacian also helps in the hybrid
transformer GNN architecture. Our SAT++ with Magnetic
Laplacian positional encodings marks the new state of the
art on the Code2 dataset, outperforming SAT by 2.85%
(relatively 14.7%). Surprisingly the Random Walk positional
encodings even slightly decay performance. For the Code2
graphs, the GNN for query and key appears to be of great
importance. We hypothesize that this is due to the sparsely
populated node features. Only a few nodes are attributed
and, additionally, the permitted vocabulary is restrictive.
The local message passing might spread the information to
neighboring nodes to adjust for this sparseness. Moreover,
w/o GNN we do not make use of edge features.

Dataset challenges. The node attributes (e.g. variable
names) and function name are only lightly preprocessed. For
example, for perfect performance, one needs to distinguish
singular and plural method names. Although singular/plural

semantically make a difference, the naming consistency is
lacking for the 450k functions taken from github. For com-
parability, we do not adjust the dataset accordingly.

8. Related Work
Prior work on positional encodings includes traditional
graph metrics, like shortest path distances (Guo et al., 2021).
Similar measures are used in the relative positional encod-
ings of Zügner et al. (2021). Related to the distance from a
node to the the AST root node in the OGB Code2 dataset
(see § 7), Luo (2022) proposes sinusoidal positional encod-
ings for DAGs leveraging their partial order. An alternative
form of spectral encodings, based on Singular Value Decom-
position (SVD), was used for positional encodings (Hussain
et al., 2022). The authors argue that this encodings also
subsumes directed graphs, however, they do not verify this
choice and the SVD of the adjacency matrix has undesirable
properties (see § D.4). Moreover, we include a discussion
of Laplacians for directed graphs in § C. For an in-depth
overview and a how-to for graphs transformers, we refer
to Min et al. (2022) and Rampášek et al. (2022). They also
provide an overview of graph transfomrmer that rethink at-
tention architectures for structure-awareness like (Dwivedi
& Bresson, 2021; Mialon et al., 2021; Chen et al., 2022;
Kim et al., 2022; Hussain et al., 2022; Diao & Loynd, 2022).

Source Code Representation. There are many attempts
on enriching source code in a graph-structured manner for
machine learning (Allamanis et al., 2018; Cummins et al.,
2020; Guo et al., 2021; Bieber et al., 2022). However, they
all retain the sequentialism of the underlying source code.
As we see in Fig. 11, this can lead to a fragile representation
w.r.t. to semantically meaningless reorderings. Such reorder-
ings are a novel perspective on the robustness of models
for source code (e.g. see (Jha & Reddy, 2022; Yefet et al.,
2020)) and similar properties can be important for mod-
els operating on logical expressions (Geisler et al., 2022).
However, the relationship between a directed graph and its
sequentializations is well known in, e.g., task scheduling.

9. Conclusion
We propose positional encodings for directed graphs based
on the Magnetic Laplacian and random walks. Both posi-
tional encodings can help transformers to gain considerable
structure awareness and show complementary strengths in
our experiments. We argue that direction-aware positional
encodings are an important step towards true multi-purpose
transformers universally handling undirected and directed
graphs. We show that directedness can be central for the
semantics in the target domain and that directed graphs
can drastically lower the effective input dimensionality (i.e.
many instances map to one graph).
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Table 1: Results on the Open Graph Benchmark Code2
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other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.
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activations, we most notably (1) add dropout on the sparsely
populated node attributes and, (2) offset the softmax score
to adjust for class imbalance of the special tokens for un-
known words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (excluding a global state). The edge and node em-
beddings are updated sequentially and forward as well as
backward messages are aggregated independently. Then, a
Multi-Layer Perceptron (MLP) with two layers processes
the concatenated embeddings (twice lower dimensionality
as the transformer).

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. For example,
with the AST depth positional encodings and the SAT++
architecture (w/ GNN) the performance improves by almost
0.58% (relatively 2.8%). Moreover, we want to emphasize
that due to the graph construction, we additionally gain ro-
bustness w.r.t. certain reorderings of statements in the source
code. We do not report results w/o GNN and solely w/ AST
depth positional encodings because this approach does not
make use of the enhanced graph structure.

Hybrid. The Magnetic Laplacian also helps in the hybrid
transformer GNN architecture. Our SAT++ with Magnetic
Laplacian positional encodings marks the new state of the
art on the Code2 dataset, outperforming SAT by 2.85%
(relatively 14.7%). Surprisingly the Random Walk positional
encodings even slightly decay performance. For the Code2
graphs, the GNN for query and key appears to be of great
importance. We hypothesize that this is due to the sparsely
populated node features. Only a few nodes are attributed
and, additionally, the permitted vocabulary is restrictive.
The local message passing might spread the information to
neighboring nodes to adjust for this sparseness. Moreover,
w/o GNN we do not make use of edge features.

Dataset challenges. The node attributes (e.g. variable
names) and function name are only lightly preprocessed. For
example, for perfect performance, one needs to distinguish
singular and plural method names. Although singular/plural

semantically make a difference, the naming consistency is
lacking for the 450k functions taken from github. For com-
parability, we do not adjust the dataset accordingly.

8. Related Work
Prior work on positional encodings includes traditional
graph metrics, like shortest path distances (Guo et al., 2021).
Similar measures are used in the relative positional encod-
ings of Zügner et al. (2021). Related to the distance from a
node to the the AST root node in the OGB Code2 dataset
(see § 7), Luo (2022) proposes sinusoidal positional encod-
ings for DAGs leveraging their partial order. An alternative
form of spectral encodings, based on Singular Value Decom-
position (SVD), was used for positional encodings (Hussain
et al., 2022). The authors argue that this encodings also
subsumes directed graphs, however, they do not verify this
choice and the SVD of the adjacency matrix has undesirable
properties (see § D.4). Moreover, we include a discussion
of Laplacians for directed graphs in § C. For an in-depth
overview and a how-to for graphs transformers, we refer
to Min et al. (2022) and Rampášek et al. (2022). They also
provide an overview of graph transfomrmer that rethink at-
tention architectures for structure-awareness like (Dwivedi
& Bresson, 2021; Mialon et al., 2021; Chen et al., 2022;
Kim et al., 2022; Hussain et al., 2022; Diao & Loynd, 2022).

Source Code Representation. There are many attempts
on enriching source code in a graph-structured manner for
machine learning (Allamanis et al., 2018; Cummins et al.,
2020; Guo et al., 2021; Bieber et al., 2022). However, they
all retain the sequentialism of the underlying source code.
As we see in Fig. 11, this can lead to a fragile representation
w.r.t. to semantically meaningless reorderings. Such reorder-
ings are a novel perspective on the robustness of models
for source code (e.g. see (Jha & Reddy, 2022; Yefet et al.,
2020)) and similar properties can be important for mod-
els operating on logical expressions (Geisler et al., 2022).
However, the relationship between a directed graph and its
sequentializations is well known in, e.g., task scheduling.

9. Conclusion
We propose positional encodings for directed graphs based
on the Magnetic Laplacian and random walks. Both posi-
tional encodings can help transformers to gain considerable
structure awareness and show complementary strengths in
our experiments. We argue that direction-aware positional
encodings are an important step towards true multi-purpose
transformers universally handling undirected and directed
graphs. We show that directedness can be central for the
semantics in the target domain and that directed graphs
can drastically lower the effective input dimensionality (i.e.
many instances map to one graph).
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Table 1: Results on the Open Graph Benchmark Code2
dataset. The first two rows correspond to prior work. All
other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.
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activations, we most notably (1) add dropout on the sparsely
populated node attributes and, (2) offset the softmax score
to adjust for class imbalance of the special tokens for un-
known words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (excluding a global state). The edge and node em-
beddings are updated sequentially and forward as well as
backward messages are aggregated independently. Then, a
Multi-Layer Perceptron (MLP) with two layers processes
the concatenated embeddings (twice lower dimensionality
as the transformer).

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. For example,
with the AST depth positional encodings and the SAT++
architecture (w/ GNN) the performance improves by almost
0.58% (relatively 2.8%). Moreover, we want to emphasize
that due to the graph construction, we additionally gain ro-
bustness w.r.t. certain reorderings of statements in the source
code. We do not report results w/o GNN and solely w/ AST
depth positional encodings because this approach does not
make use of the enhanced graph structure.

Hybrid. The Magnetic Laplacian also helps in the hybrid
transformer GNN architecture. Our SAT++ with Magnetic
Laplacian positional encodings marks the new state of the
art on the Code2 dataset, outperforming SAT by 2.85%
(relatively 14.7%). Surprisingly the Random Walk positional
encodings even slightly decay performance. For the Code2
graphs, the GNN for query and key appears to be of great
importance. We hypothesize that this is due to the sparsely
populated node features. Only a few nodes are attributed
and, additionally, the permitted vocabulary is restrictive.
The local message passing might spread the information to
neighboring nodes to adjust for this sparseness. Moreover,
w/o GNN we do not make use of edge features.

Dataset challenges. The node attributes (e.g. variable
names) and function name are only lightly preprocessed. For
example, for perfect performance, one needs to distinguish
singular and plural method names. Although singular/plural

semantically make a difference, the naming consistency is
lacking for the 450k functions taken from github. For com-
parability, we do not adjust the dataset accordingly.

8. Related Work
Prior work on positional encodings includes traditional
graph metrics, like shortest path distances (Guo et al., 2021).
Similar measures are used in the relative positional encod-
ings of Zügner et al. (2021). Related to the distance from a
node to the the AST root node in the OGB Code2 dataset
(see § 7), Luo (2022) proposes sinusoidal positional encod-
ings for DAGs leveraging their partial order. An alternative
form of spectral encodings, based on Singular Value Decom-
position (SVD), was used for positional encodings (Hussain
et al., 2022). The authors argue that this encodings also
subsumes directed graphs, however, they do not verify this
choice and the SVD of the adjacency matrix has undesirable
properties (see § D.4). Moreover, we include a discussion
of Laplacians for directed graphs in § C. For an in-depth
overview and a how-to for graphs transformers, we refer
to Min et al. (2022) and Rampášek et al. (2022). They also
provide an overview of graph transfomrmer that rethink at-
tention architectures for structure-awareness like (Dwivedi
& Bresson, 2021; Mialon et al., 2021; Chen et al., 2022;
Kim et al., 2022; Hussain et al., 2022; Diao & Loynd, 2022).

Source Code Representation. There are many attempts
on enriching source code in a graph-structured manner for
machine learning (Allamanis et al., 2018; Cummins et al.,
2020; Guo et al., 2021; Bieber et al., 2022). However, they
all retain the sequentialism of the underlying source code.
As we see in Fig. 11, this can lead to a fragile representation
w.r.t. to semantically meaningless reorderings. Such reorder-
ings are a novel perspective on the robustness of models
for source code (e.g. see (Jha & Reddy, 2022; Yefet et al.,
2020)) and similar properties can be important for mod-
els operating on logical expressions (Geisler et al., 2022).
However, the relationship between a directed graph and its
sequentializations is well known in, e.g., task scheduling.

9. Conclusion
We propose positional encodings for directed graphs based
on the Magnetic Laplacian and random walks. Both posi-
tional encodings can help transformers to gain considerable
structure awareness and show complementary strengths in
our experiments. We argue that direction-aware positional
encodings are an important step towards true multi-purpose
transformers universally handling undirected and directed
graphs. We show that directedness can be central for the
semantics in the target domain and that directed graphs
can drastically lower the effective input dimensionality (i.e.
many instances map to one graph).

Our graph construction
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Summary

Reliable Graph Machine Learning

1. A new principled transformer for directed graphs using spectral graph 
theory

2. Specifically, I propose to use the eigenvectors of the Magnetic Laplacian as 
positional encdoings for direction and structure awareness.

3. Directed graphs can have benefits in domains where sequence 
representations are common. E.g., for source code, the proposed transformer 
(a) is invariant w.r.t. meaningless reorderings, and 
(b) outperforms the prior state of the art by 15%.

Simon Geisler 107



Outlook

Reliable Graph Machine Learning

→ A transformer for directed graphs can handle a vast amount of modalities
Language, time 
series, …

Images, PDEs, 
…

Videos, …

Molecules, point clouds, 
Markov random fields…

Syntax Trees, Abstract 
Meaning Representation, 
Scene Graphs, 
Knowledge Graphs, 
Electric Circuits, Logic, 
…
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Outline (Selected Works)
1. Transformers Meet Directed Graphs (internship @ ):

A Generalization to (Almost) Universal Input Modalities
[ICML 2023, DLG-WS @ AAAI 2023]

2. Adversarial Robustness in Discrete Domains:
Focusing on Graph Neural Networks and Combinatorial Optimization
[NeurIPS 2020, 2021, 2022; ICLR 2022, DLG-WS @ AAAI 2021]

3. Uncertainty Estimation in Non-standard Settings:
Closed-Form Single-Pass Uncertainty Estimation
[ICLR 2022 (oral), NeurIPS 2022]
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Uncertainty in Supervised Learning
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Existing methods
• They often focus on a single task type.
• They are overconfident far from training data.
• They require multiple forward pass at testing time.
• They require OOD data at training time.

Natural Posterior Network (NatPN)
1. It applies to many common supervised learning task types.
2. It guarantees high uncertainty far from training data.
3. It requires only a single foward pass at testing time.
4. It does not need OOD data at training time.
5. It admits for posterior predictive distribution in closed-form

Flexible, Reliable, Fast & Practical
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Exponential Family Distribution

111

Unified parametrization for Categorical, Normal, Poison, … distributions based 
on sufficient statistics χ.

Always have a conjugate prior which is also an Exponential family distribution.

Input-dependet update with number of observations 𝑛	:
𝜽(𝒊) ∼ ℚ(𝜽(𝒊)|𝝌𝒑𝒐𝒔𝒕,(𝒊), 𝒏𝒑𝒐𝒔𝒕,(𝒊))𝒚(𝒊) ∼ ℙ 𝒚(𝒊)|𝜽(𝒊)

χ*+,-,(.) =
𝑛*/.+/χ*/.+/ + 𝑛(.)χ(.)

𝑛*/.+/ + 𝑛(.)

𝑛*+,-,(.) = 𝑛*/.+/ + 𝑛 (.)
Target distribution

(Aleatoric uncertainty)
Conjugate-prior distribution

(Epistemic uncertainty)
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Natural Posterior Network, ICLR 2022 (oral)
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Examples for Likelihood, Prior and Loss
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ψ(x) and B(x) are the Digamma and Beta function, repsectively 



Exemplary Result: Classification
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NATURAL POSTERIOR NETWORK: DEEP BAYESIAN
UNCERTAINTY FOR EXPONENTIAL FAMILY DISTRIBU-
TIONS

Bertrand Charpentier⇤, Oliver Borchert⇤, Daniel Zügner, Simon Geisler, Stephan Günnemann
Department of Informatics & Munich Data Science Institute
Technical University of Munich, Germany
{charpent, borchero, zuegnerd, geisler, guennemann}@in.tum.de

ABSTRACT

Uncertainty awareness is crucial to develop reliable machine learning models. In
this work, we propose the Natural Posterior Network (NatPN) for fast and high-
quality uncertainty estimation for any task where the target distribution belongs
to the exponential family. Thus, NatPN finds application for both classification
and general regression settings. Unlike many previous approaches, NatPN does
not require out-of-distribution (OOD) data at training time. Instead, it leverages
Normalizing Flows to fit a single density on a learned low-dimensional and task-
dependent latent space. For any input sample, NatPN uses the predicted likelihood
to perform a Bayesian update over the target distribution. Theoretically, NatPN
assigns high uncertainty far away from training data. Empirically, our extensive
experiments on calibration and OOD detection show that NatPN delivers highly
competitive performance for classification, regression and count prediction tasks.

1 INTRODUCTION

Toy Regression Task

Toy Classification Task

Figure 1: Visualization of the aleatoric and
predictive uncertainty estimates of NatPN on
two toy regressions and classification tasks.
NatPN correctly assigns higher uncertainty to
regions far from the training data.

Accurate and rigorous uncertainty estimation is key
for reliable machine learning models in safety-critical
domains. It quantifies the confidence of machine
learning models, thus allowing them to validate
knowledgeable predictions corresponding to cor-
rect/wrong predictions, flag predictions on unknown
input domains corresponding to anomaly or Out-of-
Distribution detection, or detect natural shifts of the
data facilitating real-time model maintenance (Filos
et al., 2019; Malinin et al., 2021; Ovadia et al., 2019).
Specifically, a reliable model can handle all these fail-
ure modes with high-quality estimates of aleatoric
and epistemic uncertainty (Gal, 2016). These two
levels of uncertainty allow a model to account for
both irreducible data uncertainty (e.g. a fair dice’s
chance of 1/6 for each face) and uncertainty due to
the lack of knowledge about unseen data (e.g. input
features differing significantly from training data or a
covariate shift) respectively. Aleatoric and epistemic
uncertainty levels can eventually be combined into
an overall predictive uncertainty (Gal, 2016)

Traditional neural networks are not readily applicable
in safety-critical domains as they show overconfident
prediction, in particular on data that is different from
training data (Guo et al., 2017; Lakshminarayanan

⇤Equal contribution

1

ar
X

iv
:2

10
5.

04
47

1v
2 

 [c
s.L

G
]  

16
 M

ar
 2

02
2

See paper for, e,.g., state-of-the-art OOD detection results



Exemplary Result: (Gaussian) Regression
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ABSTRACT

Uncertainty awareness is crucial to develop reliable machine learning models. In
this work, we propose the Natural Posterior Network (NatPN) for fast and high-
quality uncertainty estimation for any task where the target distribution belongs
to the exponential family. Thus, NatPN finds application for both classification
and general regression settings. Unlike many previous approaches, NatPN does
not require out-of-distribution (OOD) data at training time. Instead, it leverages
Normalizing Flows to fit a single density on a learned low-dimensional and task-
dependent latent space. For any input sample, NatPN uses the predicted likelihood
to perform a Bayesian update over the target distribution. Theoretically, NatPN
assigns high uncertainty far away from training data. Empirically, our extensive
experiments on calibration and OOD detection show that NatPN delivers highly
competitive performance for classification, regression and count prediction tasks.

1 INTRODUCTION

Toy Regression Task

Toy Classification Task

Figure 1: Visualization of the aleatoric and
predictive uncertainty estimates of NatPN on
two toy regressions and classification tasks.
NatPN correctly assigns higher uncertainty to
regions far from the training data.

Accurate and rigorous uncertainty estimation is key
for reliable machine learning models in safety-critical
domains. It quantifies the confidence of machine
learning models, thus allowing them to validate
knowledgeable predictions corresponding to cor-
rect/wrong predictions, flag predictions on unknown
input domains corresponding to anomaly or Out-of-
Distribution detection, or detect natural shifts of the
data facilitating real-time model maintenance (Filos
et al., 2019; Malinin et al., 2021; Ovadia et al., 2019).
Specifically, a reliable model can handle all these fail-
ure modes with high-quality estimates of aleatoric
and epistemic uncertainty (Gal, 2016). These two
levels of uncertainty allow a model to account for
both irreducible data uncertainty (e.g. a fair dice’s
chance of 1/6 for each face) and uncertainty due to
the lack of knowledge about unseen data (e.g. input
features differing significantly from training data or a
covariate shift) respectively. Aleatoric and epistemic
uncertainty levels can eventually be combined into
an overall predictive uncertainty (Gal, 2016)

Traditional neural networks are not readily applicable
in safety-critical domains as they show overconfident
prediction, in particular on data that is different from
training data (Guo et al., 2017; Lakshminarayanan
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Figure 2: Overview of Graph Posterior Network: (1) node-level pseudo-counts computed by the
feature encoder in the orange box, (2) PPR-based message passing visualized between the curly
braces, and (3) input-dependent Bayesian update illustrated with the Dirichlet triangles on the right.

distribution p(v)
⇠ Dir(↵prior) where ↵prior

2 R
C

+ is usually set to 1, and second predicts the
input-dependent update �(v) which forms the posterior distribution p(v)

⇠ Dir(↵post,(v)) where the
posterior parameters are equal to

↵post,(v) = ↵prior + �(v)
. (2)

The variable �(v) can be interpreted as learned class pseudo-counts and its parametrization is
crucial. For i.i.d. inputs, PostNet [14] models the pseudo-counts �(v) in two main steps. (1) it
maps the inputs features x(v) onto a low-dimensional latent vector z(v) = f✓(x(v)) 2 R

H . (2), it
fits one conditional probability density P(z(v)

|c;�) per class on this latent space with normalizing
flows. The final pseudo count for class c is set proportional to its respective conditional density i.e.
�
(v)
c = N P(z(v)

|c;�)P(c) where N is a total certainty budget and P(c) = 1
C

for balanced classes.
Note that this implies ↵(v)

0 = N P(z(v)
|�). This architecture has the advantage of decreasing the

evidence outside the known distribution when increasing the evidence inside the known distribution,
thus leading to consistent uncertainty estimation far from training data.

Bayesian Update for Interdependent Inputs. We propose a simple yet efficient modification for
parameterizing �

(v)
c to extend the input-dependent Bayesian update for interdependent attributed

nodes. The core idea is to first predict the feature class pseudo-counts �ft,(v) based on independent
node features only, and then diffuse them to form the aggregated class pseudo-counts �agg,(v) based
on neighborhood features. Hence, the feature class pseudo-counts �ft,(v) intuitively act as uncertainty
estimates without network effects while the aggregated class pseudo-counts �agg,(v) intuitively act as
uncertainty estimates with network effects.

To this end, GPN performs three main steps (see Fig. 2). (1) A (feature) encoder maps the features
of v onto a low-dimensional latent representation z i.e. z(v) = f✓(x(v)) 2 R

H . In practice, we use
a simple MLP encoder in our experiments similarly to APPNP [47]. (2) One conditional probability
density per class P(z(v)

| c;�) is used to compute �
ft,(v)
c i.e �

ft,(v)
c / P(z(v)

| c;�). Note that the
the total feature evidence ↵

ft,(v)
0 =

P
c
�

ft,(v)
c and the parameter p̄ft,(v) = �ft,(v)

/↵
ft,(v)
0 are only based

on node features and can be seen as epistemic and aleatoric uncertainty measures without network
effects. In practice, we used radial normalizing flows for density estimation similarly to [14] and
scaled the certainty N budget w.r.t. the latent dimension H similarly to [15]. (3) A Personalized
Page Rank (PPR) message passing scheme is used to diffuse the feature class pseudo-counts �ft,(v)

c

and form the aggregated class pseudo-counts �agg,(v)
c i.e.

�
agg,(v)
c

=
X

u2V
⇧ppr

v,u
�

ft,(u)
c

(3)

where ⇧ppr

v,u
are the dense PPR scores implicitly reflecting the importance of node u on v. We approx-

imate the dense PPR scores using power iteration similarly to [47]. The aggregated pseudo-count
�

agg,(v)
c is then used in the input-dependent Bayesian update (see Eq. 2). Remark that the scores

⇧ppr

v,u
define a valid conditional distribution over all nodes associated to the PPR random walk (i.e.P

u
⇧ppr

v,u
= 1). It can be viewed as a soft neighborhood for v accounting for all neighborhood hops

through infinitely many message passing steps [47]. Hence, on one hand, the PPR scores define a prob-
ability distribution over nodes using the node edges only. On the other hand, the quantity P(z(u)

| c;�)
defines a probability distribution over nodes using the node features only. Therefore, we can equiv-
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