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o » Reliability
7o

This talk focuses on reliability in the sense of
worst case robustness w.r.t. perturbations of the input
— commonly referred to as adversarial robustness.



. » Adversarial Robustness
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. » Adversarial Robustness

FZs

ML systems classify the
adversarially modified
STOP sign as a speed
imit sign, [Eykholt 201 8]

Kevin Eykholt, et al. "Robust physical-world attacks on deep learning visual classification." CVPR 201 8.
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. » Motivations of Adversarial Robustness

Iz

- security:

- safety:

- local sensitivity:

- generalization:

We do not want a real-world adversary to succeed

Our application entalls requirements on worst-case
behaviour of fg

We have some expectation about local behavior of fg

The admissible perturbations B are linked to the
semantics of the input instance



. » Adversarial Robustness in the Graph Domain

L
EI € B(Q) . t. argmax(fg()) + argmax(fe(%))
Does there exist a perturbed graph in the neighborhood B of

the clean graph % for that, e.g,, the model fy changes its prediction.

In this talk, B most frequently describes the insertion/deletion of edges
Simon Geisler Reliable Graph Machine Learning 7 11.m



Certificate vs.

o o Attack
7o

Adversarial attacks are
typically approximate:

Certificates typically require
some relaxation:
Lower bound

Determining the true
robustness is typically
intractable

Simon Geisler
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. » Perspectives on Adversarial Robustness

2
aq = B(Q) S. t. argmax(fg(q» + argmax(fe(%))

Assessing Robustness Improving Robustness

* Upper bound: Attacks * Invariant model architectures

* Lower bound: Certification * Enhanced model architecture
(will not be covered today) e Robust/adversarial training

Simon Geisler Reliable Graph Machine Learning 9 “m



. » Outline
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. » Combinatorial Optimization: TSP
BL>
From a problem instance, find a perturbed problem instance X that
maximizes the surrogate loss L(fg (%), 17).

® ) ——— Ground truth Y and Y
. . Prediction fg (%)

,‘\ ./.\ ©  Adversarial point
o @ @

Original problem instance x Perturbed problem instance X

The admissible perturbations are linked to the semantics

Geisler et al.“Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.
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. » OSAl Perturbation Model
FZs
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Geisler et al.“Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.
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o 0 Results (SAT)
s

f Standard metric For A = 0.05:
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Ratio of pert. literals A Attack Steps

Changing approx. 0.5% of the literals suffices to push the accuracy below 50%

Geisler et al.“Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness.” ICLR 2022.
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Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Adversarial Attack for Structure Perturbations
EZ>
Adversarial attack on a fixed GNN fg with loss £ and budget A:

r.r&x L(fa()) st || — OAIIIO <A

7~ Results In a discrete and non-convex optimization problem

7OA graph with n nodes has n? possible edges

— Projected Randomized Block Coordinate Descent (PR-BCD)

(complexity O(A))

Simon Geisler Reliable Graph Machine Learning 18 Tlm



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Adversarial Attacks on Graph Neural Networks

Iz

APPX APP A € {0,1}v @P: XOR
—— —— ——
rguﬁ(fe()) st. | Q OAI <A
® @: 2 Pu—
» maXL(fg(AEBPX)) St ZUPU<A A PE{(:l}”X”/\ P=pT

Details: keep binary if undirected



. » Adversarial Attacks on Graph Neural Networks
FZs

» max L(fo(A @ P,X)) st XP <A A P€ (0,1} A P=P"

For the applicabllity of gradient-based optimization

(1) P e{0,1}""" is relaxed to P € [0,1]™*" during the attack

(2) Eachentryin P € [0,1]™*" represents the probability of an edge flip
(3)  After the attack, we sample from P € [0,1]**" to obtain P € {0,1}"**"

Assumption: model can handle edge weights



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Alternative Argument for the Relaxation
SE®

r.rgd(fe()) st || — AIIIOSA
%nax L(fe( )) st — AI Iy <A

Effectively relaxes the constraint from |||l to ||-]l1

Simon Geisler Reliable Graph Machine Learning 22 Tlm



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Adversarial Attacks on Graph Neural Networks
FZs

» max L(fo(A @ P,X)) st XP <A A P€ {01} A P=P"

Y Y91 9, I;

9a U5 Us Number of “parameters" scales
P = 9, O with O(n?) with number of nodes n.
Uy



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Our Proposed Attack
&

Our variant of Projected Randomized Block Coordinate Descent
(PR-BCD) that maintains a sparse parameter space throughout the optimization

|. Sample subspace 2. Gradient update 3. Projection (constr) 4. Resample and repeat
0 0 0.1 1.1 0 1 0 0o 1
0 0.3 0.2 0
0 o 0.6 04 0.5 03 05 03
0 0 0
max L(fe(ADP,X)) st. YP<A A PEe{01}" Example: Undirected Graph with n = 5 nodes and budget A = 2

Tl



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Our Proposed Attack

SE
Our variant of Projected Randomized Block Coordinate Descent
(PR-BCD) that maintains a sparse parameter space throughout the optimization

0.1 03 0.9 1 1

Sampling of final
discrete perturbations

»

0.3

04 0.1

mPaX L(fg (A @ P, X)) s.t. ZP < ANPE {O,l}nxn Example: Undirected Graph with n = 5 nodes and budget A = 2

Tl



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » ocalable Attacks for Structure Perturbations

BL>
Dataset # Nodes n  Size (dense) Size (sparse)
Citeseer 1 7.8MB 1 46.7kB
Cora ML 31.9MB 319.2kB
PubMed |.6GB |.8MB
arXiv * 169.3k | 14.7GB 23.3MB
Products 24.0TB 2.5GB
Papers LT 49.3PB 32.31GB

Previous work

Ours (first-order attack)

—  We are the first to study adversarial robustness on such massive graphs.

*There are a few exceptions that study adversarial robustness for some special cases on graphs with similar size

Simon Geisler
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Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » Ql:Are GNNSs robust it applied to large graphs?

o &

Adversarial attack on GCN on Products (2.5 mio. nodes, |24 mio. edges):

Adversarial accuracy

Simon Geisler
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. » PR-BCD s available in Py Torch Geometric

from torch_geometric.contrib.nn import PRBCDAttack

prbcd = PRBCDAttack(gnn, block_size=250_000)

prbcd.attack(data.x, data.edge_index, data.y,
budget=global_budget, idx_attack=data.test_mask)

Simon Geisler Reliable Graph Machine Learning 28



. » Local Constraints

L
What are reasonable / semantic preserving / ... perturbations AI S B(o%)?

— Open question and most certainly application specific

[t Is reasonable to design flexible attacks, e.g., also supporting local constraints:
Global constraint }; ; P; ; < AW and local constraints™ Y P; ; < Agl)

In Geisler et al. “Adversarial Training for Graph Neural Networks™ arXiv 2023 we
extend the presented attack to also obey local constraints:

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023. * with symmetrized P

Simon Geisler Reliable Graph Machine Learning 29 “m



Poisoning vs. Evasion:
« o lraining time vs. test time attacks

Iz

So far; | have only illustrated test time attacks (evasion):

IE( L(fe( ) st I| — AI lp < A

Backpropagate

through the training
Training time attacks (poisoning). l

TE £(fe( >) st || 051 lo <4 A6 —Tram<>

Simon Geisler Reliable Graph Machine Learning Tlm
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&
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Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » OUrrogate Loss

EZS

PR-BCD Is an efficient first-order optimization method to approximate

max L(fg(q )) st || q %”o <A

Surrogate losses for interconnected targets

. but do we optimize for a sensible target with common losses!

Simon Geisler Reliable Graph Machine Learning 32 “m



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

. » ourrogate Losses for"Global” Attacks

EZS

Simon Geisler Reliable Graph Machine Learning 34 Tlm



Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.

Y Surrogate Losses for “Global” Attacks (binary)

o eE CE: | has a higher
0.8 “oain’ than 2
i \&‘\
2 . 0.6
é O (2 9 CW: | and 2 have
ééo » (D | (D the same “gain”
= B @ 0.2 @
0.0 MCE: | has a higher
- ! ’ - ! ’ “gain” than 2

Logit margin maxX.c Zex — Ze
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&

|. Adversarial Robustness

2. Adversarial Attacks (Assessing Robustness)
a. Application: Combinatorial Optimization
b. Scalable Attacks for Structure Perturbations
c. Loss Functions for Interconnected Predictions: Node Classification

3. Improving Robustness
a. Invariant model architectures
b. Enhanced model architectures
c. Robust/adversarial training



How Do Transformers Encode Code!
o

EZS

def fl_score(pred, label):

correct = pred == label

tp = (correct & label) .sum()
fn = (~correct & pred).sum()
fp = (~correct & ~pred).sum()

precision = tp / (tp + fp)
recall = tp / (tp + fn)
return (
2 * (recall % precision) /
(recall x precision)

Tokenization:

def —  fl_score ( > pred B B label B

Simon Geisler Reliable Graph Machine Learning 38 @ Google DeepMind “m



\/l Otlvatl on fo g D l e Cted G ra’p h S. Note: Our construction via the
Ny En cO d e Sym m e-trl es Abstract Syntax Tree (AST)

. 5 covers loops, exceptions, etc.

def fl_score(pred, label): def fl_score(pred, label):
correct = pred == label correct = pred == label
tp = (correct & label) .sum() tp = (correct & label).sum()
fn = (~correct & pred).sum() fn = (~correct & ~pred).sum()
fp = (~correct & ~pred).sum() recall = tp / (tp + fn)
precision = tp / (tp + £fp) ‘ - fp = (~correct & pred).sum()
recall = tp / (tp + fn) precision = tp / (tp + fp)
return ( return (
2 * (recall * precision) / 2« (preeision + recall) /
(recall + precision) many to one (precision + recall)
) (here: 4,096 — |) )

— The model itself and the modelling of the input data greatly impact robustness

Geisler et al."“Transformers Meet Directed Graphs.” ICML 2023.
Simon Geisler Reliable Graph Machine Learning 39 @ Goog|e DeepMind Tlm
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. » ocalable Robust Message Passing Aggregation

B2
Graph Neural Networks™ (GNN) message passing operation:

hy = 6@ (AGGREGATE® {(Ayy, h{™PW®),vu e N () uv})

Use a robust J

aggregation instead!

Eg,a GCN:h{P ~ ¢® (MEAN {(Avu, hy Y W(l)):v u€eN()u U})

Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.
Geisler et al.“Reliable Graph Neural Networks via Robust Aggregation.” NeurlPS 2020.

Simon Geisler Reliable Graph Machine Learning 41



Y

Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.
Geisler et al.“Reliable Graph Neural Networks via Robust Aggregation.” NeurlPS 2020.

Scalable Robust Message Passing Aggregation

o &

.
Our Soft Median:  u(X) = softmax (T) X=s"X = argmingexlX — X'l

Distance to dim.-wise Median:  d; = ||X — x;|| Input Embeddings: X, X
® ® ’ ®
: X o0
¢t
® o

Original neighbors +  True mean ® Adversarial neighbors ¥ Mean Soft Median

Simon Geisler Reliable Graph Machine Learning 47 11.m



Y

Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.
Geisler et al.“Reliable Graph Neural Networks via Robust Aggregation.” NeurlPS 2020.

Scalable Robust Message Passing Aggregation

o &

.
Our Soft Median:  u(X) = softmax (T) X=s'X =~ argmingexlX— X'l

Distance to dim.-wise Median:  d; = ||X — x;|| Input Embeddings: X, X
Instance closest to the Sample
dim.-wise Median: mean:
argming,ex [IX — x'l| Yxrex X'

-

Temperature T

Simon Geisler Reliable Graph Machine Learning 48 “m



. » Evaluation Prtfall: Non-Adaptive Attacks

2
What we should evaluate for model fg: max £(f9 ( ))

What is being evaluated instead (with surrogate model gg #+ fg):

L(fe()) ele _ arg.gaax L(gg( )

Simon Geisler Reliable Graph Machine Learning 52



. » How to Design Adaptive Attacks?

L
Many defenses fg disallow certain connections (e.g. Jaccard GCN, SVD GCN)

max  L(fo(@9))

“mask out” edges

Geisler et al."Are Defenses for Graph Neural Networks Robust?” NeurlPS 2022.

Simon Geisler Reliable Graph Machine Learning 53 “m



Y

Adaptive vs. Non-Adaptive Attacks

o &P

SVD-GCN
Jaccard-GCN
GNNGuard
RGCN

GCN

ProGNN

GRAND
Soft-Median-GDC

72 74 76 78 75 80 0 20 40 0 20 40 60

Adversarial accuracy (%) Adversarial accuracy (%)  Correct predicitons (%) Correct predicitons (%)

(a) Global, Poisoning (b) Global, Evasion (c) Local, Poisoning (d) Local, Evasion

Geisler et al."Are Defenses for Graph Neural Networks Robust?” NeurlPS 2022.

Simon Geisler Reliable Graph Machine Learning 54
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Y

Adaptive vs. Non-Adaptive Attacks

o &P

SVD-GCN 2~~~ /| /A [ ]) /L]
Jaccard-GCN / / /)

GNNGuard [

RGCN

GCN

ProGNN

GRAND

Soft-Median-GDC

[/

T T T T 1 1 I 1 1 I 1 1 T
72 74 76 78 75 80 0 20 40 0 20 40 60
Adversarial accuracy (%) Adversarial accuracy (%)  Correct predicitons (%) Correct predicitons (%)

(a) Global, Poisoning (b) Global, Evasion (c) Local, Poisoning (d) Local, Evasion

Geisler et al."Are Defenses for Graph Neural Networks Robust?” NeurlPS 2022.

Simon Geisler Reliable Graph Machine Learning 55
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I X Adaptive vs. Non-Adaptive Attacks

SVD-GCN
Jaccard-GCN
GNNGuard Adaptive
RGCN - attack
Non-
GCN 71 adaptive
ProGNN attack

GRAND
Soft-Median-GDC

72 74 76 78 75 80 0 10 20 0 10 20 30
Adversarial accuracy (%) Adversarial accuracy (%)  Correct predicitons (%) Correct predicitons (%)

(a) Global, Poisoning (b) Global, Evasion (c) Local, Poisoning (d) Local, Evasion

— Our defense motivated by robust statistics seems to be the only effective option

Simon Geisler Reliable Graph Machine Learning 56 Tlm
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. » Adversarial Training in the Inductive Setting

Iz

We adapt the common benchmark setup for node-level predictions:

* 5% of nodes are used for training

 80% of nodes are unlabeled

—

e 59% of nodes are used for validation

g

e 0% of nodes are used for test

— Semi-supervised inductive learning

NOT included
in training graph

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



. » Adversarial Training in the Inductive Setting

SE
Regular training objective where we sample the graph extended by test
nodes and test labels (G',y") ~ D(G’ y) with test set Iregt:

min I ,
6 (g’y’)~1)(gy) z:lEHTest (fH(g )l yl)

Adversarial training objective:

min E max Y L ') v
I 1 Eoiey gy Dictres £ (fo@), 1)

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023.



Oo)g Adversarial Training in the Inductive Setting

min E max - L ( 7' -')
0 (g’,y’)~2)(g,y) g’EB(Q’) ZLEHTest f@ (g )l yl
~ mein grEnBa()g() ZiEHTrain'l: (f@ (g)i’ yl) + ZiEHUnlabeledL (f@ (g)i’ yl)
Approximate using Next: Self-training, where y; are
adversarial attack Model obtained, e.g.,, with an MLP

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023.

Simon Geisler Reliable Graph Machine Learning 61 “m



. » Model Choice for Adversarial Training

Iz

We propose to use flexible GNN models that fit in the framework

K g(41) 0 0
Z ykl*H = Vdiag(g(A))I_/TH =V 0 g(?z) 0
= 0 0 )

vV Asufficiently flexible message passing scheme (we use K = 10)

vV Wean interpret the learned message passing Yin—o Vi L®

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023.

V'H



. » Robust Message Passing Characteristics

Model: KX Setup: Citeseer with 20%
k — : ~ T
z vil“H = Vdiag(g(A))V'H of edges perturbed
k=0
Polynomial interpretation: Spectral fitter G(A) :
| ! g 10 Training Constraints
oy 035 o ! 2 | Regular
8 am [ Mren, .I:h - T"'“"'" 3 N Adversarial  w/ local
T e — Adversarial  w/o local
11 1) 11}
Index / Index / Index / 3 gervg e A
Constraints: w/ local | w/o local
Training: Regular Adversarial
Simon Geisler Reliable Graph Machine Learning 65 “m



Adversarial attacks:
| R-BCD: W/ local constraints
PR-BCD: w/o local constraints

I O}gg Efficacy of Adversarial Training

Dataset: Citeseer

Model Adv. A.eval. — LR-BCD PR-BCD LR-BCD PR-BCD Certifiable accuracy / sparse smoothing
trn. A.trn. | Clean e=0.1 €=0.25 Clean 3 add. 5 del.

GCN X - 720+ 2.5 547+ 2.8 51.7+ 2.8 453+ 34 38.0 + 3.8 383+ 11.5 1.7+ 0.7 48+ 1.5
GAT X - 3.6 £2.7 -39+34 +0.5+35 -159+53 234+73  -140+12.0 -1.7+£0.7 48+ 1.5
APPNP X - +0.2 £ 1.1 +1.7 £ 0.7 +19+14 +3.0+1.2 +2.2+2.5 +89+9.1 +31.2+64 +31.6+64
GPRGNN X - +2.2+43 +4.2 +2.7 +3.6 4.9 +5.5+3.9 +79 + 4.6 +17.9+69 +424+44 +41.3+3.7
ChebNetII X - +1.1 +2.2 +5.8 +2.5 +5.0+24 +104+2.6 +7.6 + 3.4 +24.6 £99 +556+1.2 +54.0+09
SoftMedian X - +0.9 + 1.7 +9.5+2.2 +934+19 +1624+24 +146+29 +252+105 +603+14 +57.54+0.8
GCN Y LR-BCD -02+1.2 +7.8 £ 1.6 +59+1.5 +109+2.1 +8.1 £2.3 -30+£94 +107+4.6 +13.1£5.1
PR-BCD +0.0+1.9 +6.9 +£ 0.9 +53+ 1.6 +8.6 +£2.3 +5.8+2.4 +42+14.6 +10.1+55 +11.4+45
GAT v LR-BCD +0.8+1.6 +59 + 3.7 +9.0 +£ 3.0 +8.4+5.1 +13.1+£35 -2.0 +£23.0 +1.4+1.7 +4.0 £ 2.1
PR-BCD  +1.1 +22 +89+28 +13.2+3.7 +103+23 +21.8+4.8 -10.1 £13.7 +1.2+2.0 +2.8 +1.2
APPNP Y LR-BCD -08+1.3 +7.6 + 1.6 +56+19 +11.1+£1.9 +8.3 + 3.6 +21.7+9.5 +413+29 +441+1.2
PR-BCD -02+22 +6.2 + 2.3 +5.5 £ 3.1 +9.0 £ 2.9 +6.5 £ 3.8 +193+72 +41.0+3.8 +41.9+3.0
GPRGNN v LR-BCD +1.7+3.0 +157+3.6 +13.6+35 +248+42 +229+43 +34.0+11.5 +674+1.5 +65.0+£2.5
PR-BCD +0.6+3.6 +150+3.6 +159+42 +232+43 +263+54 +329+11.8 +69.0+ 1.5 +65.9 +2.3
ChebNetIl v LR-BCD +3.7+14 +1154+1.6 +11.5+1.1 +164+19 +160£29 +31.5+127 +623+19 +59.8+£2.5
PR-BCD +34+1.7 +132+22 +143+12 +195+16 +19.84+23 +30.7+132 +654+26 +62.9+3.7

Geisler et al.“Adversarial Training for Graph Neural Networks.” In arXiv. 2023.
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.o Summary

B2
Email: geisler@in.tum.de
Twitter/X: @geisler_si

Covered works / references:

Geisler et al."Adversarial Training for Graph Neural Networks.” arXiv 2023.
Geisler et al." Transformers Meet Directed Graphs.” ICML 2023.

Geisler et al."Are Defenses for Graph Neural Networks Robust?” NeurlPS 2022.

Geisler et al."Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial
Robustness.” ICLR 2022.

Geisler et al."Robustness of Graph Neural Networks at Scale.” NeurlPS 2021.
Geisler et al."Reliable Graph Neural Networks via Robust Aggregation.” NeurlPS 2020.
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Classes of Certificates

s

Strategy | Strategy |I:

“White-box” certificates “Black-box’’ certificates

+ Take advantage of the problem + Can be applied to any classifier for
structure for accurate certificates, discrete data (including all GNNs) out
i.e. tight lower bounds of the box

— Special derivation for every model — Bounds might be less tight since
required, i.e. expensive development model structure not exploited

Is there something in between?
Strategy Ill: “Gray-box” certificates

Zigner et al. Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations. KDD 2020 Schuchardt et al. Localized Randomized Smoothing for Collective Robustness Certification. ICLR 2023
Bojchevski at al. Certifiable Robustness to Graph Perturbations. NeurlPS 2019 Schuchardt et al. Collective Robustness Certificates: Exploiting Interdependence in GNNs. ICLR 2021
Zigner et al. Certifiable Robustness and Robust Training for Graph Convolutional Networks. KDD 2019 Bojchevski et al. Efficient Robustness Certificates for Discrete Data. ICML 2020

T



X Idea: Gray-Box Certificates

- Enhance black-box by general model properties
* message-passing princple
* invariances

‘ Adversarial node <€~~~ Adversarial message

Class A
— Class B

Schuchardt, Glinnemann. Invariance-Aware Randomized Smoothing Certificates. NeurlPS 2022
Scholten, Schuchardt, Geisler, Bojchevski, Glinnemann. Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks. NeurlPS 2022



X Idea: Gray-Box Certificates

- Enhance black-box by general model properties
* message-passing princple
* invariances

‘ Adversarial node <€~~~ Adversarial message
Deleted edge Intercepted message
Smoothed GAT on Cora-ML
? - sparsification
% 75 === w/0 sparsific. O
= 50 Class A
==
2 25
8 —_—
0% 20% 40% 60% O

Perturbed nodes

Schuchardt, Glinnemann. Invariance-Aware Randomized Smoothing Certificates. NeurlPS 2022
Scholten, Schuchardt, Geisler, Bojchevski, Glinnemann. Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks. NeurlPS 2022



Individual vs. Collective Certificates

s

* Often: classifier that simultaneously outputs multiple predictions give a single input
* node classification, image segmentation, named-entity recognition

* Problem:"Standard” certificates care about a single prediction only HO\%@?
H
B~ B F

* Collective robustness certificate = number of predictions
that are simultaneously guaranteed to remain stable

mutually o
exclusive B,
\
I
| P
receptive
) field 4
N Y P
individual

Schuchardt et al. Collective Robustness Certificates: Exploiting Interdependence in GNNs. ICLR 2021



Results

s

Task: Node-Level Classification

—
-

LN — - Proposed
...........

o

o0
S
o0

©
o
o

—  Citeseer N

N

Certified ratio
o o
[\ =~

— Pubmed

Certified ratio
(@»)} (@»)} (@»)} (@)}
S

©
o
o

0 109 10! 102 103
Attribute deletions

Schuchardt et al. Collective Robustness Certificates: Exploiting Interdependence in GNNs. ICLR 2021

—
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200

400 600
Edge deletions

300

1000

Local budget
1

2

4

8

16

Cora-ML data (~3k
nodes, ~8k edges) and
smoothed GCN model



Transformers Meet
T Directed Graphs

Forward

Stack . e . 9
Multi-Head '} Q"\ \z
Attention

I

Positional
Encoding ®_C;_> & O

N CHRE N Yujia Li2,
DERIERVERNCIFZWNINEY ELR®EnlEHIEY Stephan GUnnemann!, Cosmin Paduraru?
| Technical University of Munich 2 DeepMind

oYW 2023 |
& Deep Learning on Graphs Workshop @ AAAT EurER @ (soogle DeepMind .I.I_m



ransformers Meet Directed Graphs
A __L; DR Previous

2 Ours Transformer  Graph Transformer
\ /
|. How to generalize transformers N \ /
to directed graphs!? —'= el
. . L . / \ S
— Direction-aware positional encodings: [ Sequences ! ; Undirected
a) Spectral encodings: Magnetic Laplacian ‘o ) ,’ “.‘f"’aphi’;'

b) Directional random walks

Space of directed Graphs

2. Directed graphs are important for many applications

— Appropriate modeling of input modalities:

a) Ifignoring the direction, the model might sacrifice expressivity
b) We can leverage symmetries in the input domain

0 Google DeepMind TLTI



. » odlnusoidal Encodings :

Forward

o/$\° | Stack

S A
'\. g Multi-Head

o Attention
Q‘\A ; —

3

3 -

P e OFG

Node v < &

Positional

Encoding k
of node v

Simon Geisler Reliable Graph Machine Learning 96 @ Google DeepMind Tlm



. » odlnusoidal Encodings

< 0
./‘1\‘ g
\. =
o
% 5
=
3
[T
Sinusoidal Discrete
di - Fourier
CNCOUINGS  related o Transformation

Simon Geisler Reliable Graph Machine Learning 97 @ Google DeepMind Tlm



d - # of features/

. : embedding dim.
N Slgﬂa| PI”OCGSSIﬂg: DFT 2110,000 - largest wave length

\%
j - frequency index
X - signal (spatial domain)
X
n

- signal (spectral domain)
- sequence length

Frequency index j

2 - node index/position

PESY . = sin(v - 1/10,000%//4)

- Sinusoidal Positional NG
Encodings PEG) g R™*4 PE, ;" = cos(v-1/10,000%//)
* Positional encodings inspired by Discrete FoumerTransformation (DFT):
— 27T —i 21Vj
J?j=2 xv[cos(v-xj)—i-sin(v —])] zxv n
v=0

Simon Geisler Reliable Graph Machine Learning 98 @ Google DeepMind “m



. » Slnusoidal Encodings <> Laplacian Eigenvectors

)
-

Eigenvec. I
)
S

Frequency index j

Node v

Assumption: graphs are undirected

Discrete Graph Fourier Transformation:

| 3 Fourier — Figenvectors of
encodings jated 1o Transformation relatedto  combinatorial/graph Laplacian

Sinusoidal

Simon Geisler Reliable Graph Machine Learning 99 @ Goog|e DeepMind 11.m



Signal Processing: DFT 111

A 1
@ 1 w w? w1
Circular Convolution: s' = 1 “fz “:4 .. “’2(:1_1)
y  =IDFT(DFT(h(w) * x)) 1 nl 21 . (1)
= IDFT (h(w) - DFT(x))
= 1/n S diag(h(w)) STx h(w®) 0o - 0
with DFT % = 5Tx, diag(h(w)) =| ¢ @D -0
IDFT y = Sy, 0 0 o h(w™ )
Fourier sinusoids § € C™*™, and I
diagonal filter diag(h(w)) € R™ ", withw =e n

@ Google DeepMind  TLTI
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Signal Processing: DFT «» GFT

Iz

Circular Convolution:

y = IDFT(DFT(h(w) * x))
= IDFT (h(w) - DFT(x))
= 1/n S diag(h(w)) STx

with DFT x = §Tx,

IDFT y = 57,

Fourier sinusoids § € C™", and

diagonal filter diag(h(w)) € R™ ",

Convolution on graphs:
y = IGFT(GFT(g(A) * x))
= IGFT(g(A) - GFT(x))
= V diag(g(A) Vx
with eigendecomposition L = VAVT
of graph Laplacian L=D — A
with adjacency matrix 4 € RZ;"

and degree matrix D = diag(A1)

0 Google DeepMind TLTI



Laplacian Eigenvectors:
«» W/O symmetrization <> w/ symmetrization

-]

A/. K
0—»0/'
Eigenvec. I'
N
- -

Eigenvec. I
)
S

(

50 0o 50

Node v Node v
Laplacan L= D— A =VAVT A € RIF™  adjacency matrix
D diagonalized degree matrix

Symmetrization — real and symmetric Laplacian

Simon Geisler Reliable Graph Machine Learning 102 @ Goog|e DeepMind Tlm



Magnetic Laplacian

A; € RIS™  symmetrized adjacency matrix

L@ = D.—A; 0O exp(i(')(‘”) D, diagonalized degree matrix
q potential (hyperparameter)
@thg; = 21q (Au > — A, u) exp/® element-wise exp./product

i =v-—1 complex number

—
The Hermitian (L(4) = L(@" ) Magnetic Laplacian encodes edge

direction using complex numbers

Simon Geisler Reliable Graph Machine Learning 103 @ Goog|e DeepMind Tlm



Vagnetic
. » Directed

Laplacian:

«— Undirected

L@:.= D, — A, oexpli2ng (A—AT)] D" 7%,

L(1/4‘) - =

Reliable Graph Machine Learning

104 @ Google DeepMind TI_ITI



L

armonics for Directed Graphs

.‘/. ‘\’»\‘ Size - magnitude
Color - phase

Graph (1)

200

{

.‘/. The eigenvectors are

predictive for the node’s

position and relative
distances
> Frequen cy first 4 eigenvectors, associated with
Reliable Graph HRCheSREEE eigenvalues 105 ) Google DeepMind  TLITI

00
ate

Graph (3

Simon Geisler



Function Name Prediction:

w/ GNN
. o Open Graph Benchmark Code 2
B T
Forward
Position. Enc. GNN Test F1-Score Sta_Ck
: X 16.70+0.05 IState of Multi-Head
= 19.374+0.09 Attention
= the art
g AST depth X 19.09L0.10 ST T TV
v 21.03+0.07 NN
., ASTdepth /21614012
- : X 19.43+0.03
o O
C@ = MagneticLap. 53 2240.10 ®—qr>
Our graph construction

— We outperform previous state of the art by 2.85% (relatively 14.79)

Simon Geisler Reliable Graph Machine Learning 106 @ Goog|e DeepMind Tlm



Y

Summary

2
’

A new principled transformer for directed graphs using spectral graph
theory

Specifically, | propose to use the eigenvectors of the Magnetic Laplacian as
positional encdoings for direction and structure awareness.

Directed graphs can have benefits in domains where sequence

representations are common. E.g,, for source code, the proposed transformer
(a) Is invariant w.rt. meaningless reorderings, and

(b) outperforms the prior state of the art by |5%.

0 Google DeepMind TLTI



. » Outlook
&

— A transformer for directed graphs can handle a vast amount of modalities

L Y -
anguage, ime o—0—0—0 Molecules, pomt clouds,

series, ...
Markov random fields...

Images, PDEs, Syntax Trees, Abstract
Meaning Representation,
Scene Graphs,

Knowledge Graphs,
Electric Circurts, Logic,

Videos, ... ® oo

Simon Geisler Reliable Graph Machine Learning 108 @ Goog|e DeepMind Tlm



I Oo/g Outline (Selected Works)

|. Transformers Meet Directed Graphs (internship @ @) Google DeepMind ):

A Generalization to (Almost) Universal Input Modalities
[ICML 2023, DLG-WS @ AAAI 2023]

2. Adversarial Robustness in Discrete Domains:

Focusing on Graph Neural Networks and Combinatorial Optimization
[NeurlPS 2020, 2021, 2022; ICLR 2022, DLG-WS @ AAAI 202 1]

3. Uncertainty Estimation in Non-standard Settings:

Closed-Form Single-Pass Uncertainty Estimation
[ICLR 2022 (oral), NeurlPS 2022]



. » Uncertainty in Supervised Learmning

Iz

Input Space

certainty

certainty
certainty

Output Space

Simon Geisler

Input Space

Existing methods

¥ They often focus on a single task type.
% They are overconfident far from training data.

% They require multiple forward pass at testing time.
% They require OOD data at training time.

Natural Posterior Network (NatPN)

SN

It applies to many common supervised learning task types.

[t guarantees high uncertainty far from training data.

It requires only a single foward pass at testing time.

It does not need OOD data at training time.

It admits for posterior predictive distribution in closed-form

Reliable Graph Machine Learning



. » Exponential Family Distribution

L
Unified parametrization for Categorical, Normal, Poison, ... distributions based
on sufficient statistics Y.

Always have a which is also an Exponential family distribution.

update with number of observations n :



. » Natural Posterior Network, ICLR 2022 (oral)

o &

Input Space

Simon Geisler

0(1) ~ onst,(i) (Xpost,(i), npost,(i))

0
' A
b n) = NgP(z() |w)
\ 4 E (1) B (1) 101 st,
Normalizing Flow C xW=gE®) | Fge &
Pz ) 3% x O
v n(2) — NH]P’(Z(2) ’w) 0 A X(Q)
\ (1) X =g4(2?) XU o
5 X x
x /
\ Z(2)/_ :
X n® = NgP(z® |w) 62 R
(3) X(B) — g,l/)(Z(B)) \;_,‘”7“” ............................
\ ;, 4’ xxﬂ;post,(S)

Latent Space

Reliable Graph Machine Learning

Exponential Family Parameter Space

112

v



. » Examples for Likelihood, Prior and Loss

EZS

Likelihood P Conjugate Prior Q Parametrization Mapping m Bayesian Loss (Eq. 5)

o Corlp p~ Dirla) 4 B log %ﬁa%?@(iiig» - O)p(af’) - Tl — Dy(al)

J N0 150 e AT ot ) x=( %ﬁé) (?z%1(—%(y—uo)j;§+¢(a)—1og6—1og27r)
n=X=20 (i) =  +log ((2m)} 3T(a) ) — Jlog A+ — (@ + $)¥(a)

y~PA()  A~Tf) 25" B g T g5 + (e

P (x) and B(x) are the Digamma and Beta function, repsectively

Simon Geisler Reliable Graph Machine Learning 113 “m



. » Exemplary Result: Classification

FZs

Model Predictions Predictive Certainty

x  Class #1 x  Class #1
a Class #2 : : ~  Class #2
v Class #3 R ‘ v Class #3

AleatoricCertainty [T [T [ Predictive Certainty [l

See paper for, e,.g,, state-of-the-art OOD detection results

Simon Geisler Reliable Graph Machine Learning 114



. » Exemplary Result: (Gaussian) Regression

FZs

Model Predictions

31 i . —— Predicted Mean
i : Aleatoric Uncertainty
Training Data

Predictive Certainty

Simon Geisler Reliable Graph Machine Learning 115



. » Graph Posterior Network (NeurlPS 2022)
R )

) Dirichlet Categorical
__________ (epistemic) (aleatoric)

—
—
—
—
—
—
-
—

| | £\
) prior
o | |0 |
E—{MLP fe(az)J—> E— / @ >A_> D
// agg,(v)
a;(v) Z(v) >[NF p(zlc = C, ¢)]—>I:(I | K (3288 3
/32’ K / i i

; | PPR with H/U,u u eV apost,(v)

-
—
—
-
-
—
—
—-—
—
—
—
-
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—
—
—
—
—
-—
-
—
—
—
—
—
-
-
-
-
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—
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Thank you for your attention!



