
Decoupling the
computational graph
and the input graph
The most important unsolved problem
in graph representation learning

Explainability and Applicability of Graph Neural Networks
7 September 2023

Petar Veličković
Staff Research Scientist, Google DeepMind
Affiliated Lecturer, University of Cambridge

Our key player: the graph neural network (GNN)

The local function, f, needs to be permutation invariant to neighbourhood features XNi

Zooming into GNNs: the message-passing paradigm

The aggregation function, ⨁, needs to be permutation invariant (e.g. sum, max, average)

Using GNNs to solve everything else

Using GNNs to solve everything else

Using GNNs to solve everything else

Using GNNs to solve everything else

Using GNNs to solve everything else

For more information on GNNs…

This is as far as I’m able to talk about GNNs here… but my prior GNN talks are publicly available :)

Towards graph rewiring

● The GNN equation assumes something (seemingly) very
innocent: that the “ground truth” graph is given to us!

● However, this claim is far from innocent, as we will unpack now
○ It will lead us into a dynamic area known as graph rewiring
○ A key emerging area of graph representation learning

(and an area of high interest to science)

● Further, studying this area will reveal surprising connections
between state-of-the-art models and graph neural networks
(Spoiler alert: almost everything is a special case of a GNN :))

The importance of a “bespoke” graph

In practice, the given graph is often suboptimal for the task, even if it is completely correct

Imagine you want to repeatedly query whether pairs of nodes are connected in a graph

Naïvely running a GNN over the exact edges of the graph requires linear time in the worst case!

Imagine we query connectivity of (b, g) after adding edge (h, d)...

The importance of a “bespoke” graph

Maintaining the right set of edges can make a difference between linear-time and (amortised)
near-constant-time complexity!

Here, we use a disjoint-set union data structure, which stores a forest that identifies each
connected component with one tree (and its root).

The importance of a “bespoke” graph

Maintaining the right set of edges can make a difference between linear-time and (amortised)
near-constant-time complexity!

After adding a new edge (h, d), the respective trees are merged

The importance of a “bespoke” graph

Maintaining the right set of edges can make a difference between linear-time and (amortised)
near-constant-time complexity!

After querying (b, g), the tree gets compressed for fast future lookups

Bottlenecks and oversquashing

● Additionally, certain graph structures can induce pathological effects in GNN propagation, no
matter how well they are trained!

● For example, issues can often arise around bottlenecks:

● Bottlenecks cause the oversquashing effect (Alon and Yahav, ICLR’21)

● To meaningfully allow all pairs of nodes to communicate, the message size over the
bottleneck needs to grow exponentially with GNN depth

In summary…

● Even when a graph is perfectly correct, it might not be optimal for the task at hand
○ In the path-querying example, both graphs “fully correctly” encode the information
○ One induces O(n) GNN layers; the other induces near-O(1) layers

In summary…

● Even when a graph is perfectly correct, it might not be optimal for the task at hand
○ In the path-querying example, both graphs “fully correctly” encode the information
○ One induces O(n) GNN layers; the other induces near-O(1) layers

● In the real world, “perfect graphs” are incredibly rare

○ Take the standard example: a molecule!
○ It’s an excellent representation for chemistry, but only an approximation for physics
○ In practice, all pairs of atoms interact, not just ones connected by a bond!

In summary…

● Even when a graph is perfectly correct, it might not be optimal for the task at hand
○ In the path-querying example, both graphs “fully correctly” encode the information
○ One induces O(n) GNN layers; the other induces near-O(1) layers

● In the real world, “perfect graphs” are incredibly rare

○ Take the standard example: a molecule!
○ It’s an excellent representation for chemistry, but only an approximation for physics
○ In practice, all pairs of atoms interact, not just ones connected by a bond!

● Some graphs are just pathologically bad

○ No matter what GNN we can feasibly train over them…
○ Certain kinds of communication will be practically impossible!

(until quite recently, we did not know exactly when this happens…)

In summary…

● Even when a graph is perfectly correct, it might not be optimal for the task at hand
○ In the path-querying example, both graphs “fully correctly” encode the information
○ One induces O(n) GNN layers; the other induces near-O(1) layers

● In the real world, “perfect graphs” are incredibly rare

○ Take the standard example: a molecule!
○ It’s an excellent representation for chemistry, but only an approximation for physics
○ In practice, all pairs of atoms interact, not just ones connected by a bond!

● Some graphs are just pathologically bad

○ No matter what GNN we can feasibly train over them…
○ Certain kinds of communication will be practically impossible!

(until quite recently, we did not know exactly when this happens…)

● Choosing a computational graph may give us the final building block to “all of discrete DL”

One equation for all of (discrete) deep learning?

Let GNN𝜃 (𝒢, 𝐗) be any neural network with
parameters 𝜃 applied over the graph 𝒢 with
(node, edge…) features X

Then:
GNN𝜃 (𝒢, 𝐗)=MPNN𝜃′ (ℛ(𝒢), ℛ(X))

where MPNN is a message-passing GNN over a
one-hop neighbourhood and ℛ is rewiring

(NB. ℛ may introduce new nodes/edges in 𝒢
and appropriately initialise their features in X!)

See: Francesco Di Giovanni’s keynote
@ NeurIPS’22 GLFrontiers

So… how do we
rewire a graph?

So… how do we
rewire a graph? Assume no edges

So… how do we
rewire a graph? Assume no edges

So… how do we
rewire a graph? Assume no edges

Under all GNN flavours, this boils down to:

Deep Sets (Zaheer et al., NeurIPS’17)

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges

(Does this look familiar?)

If we use attentional GNNs:

A note on Transformers

Transformers are Graph Neural Networks!
● Fully-connected graph
● Attentional flavour

The sequential structural information is injected
through the positional embeddings. But the
model is under no requirement to use this
information!

Attention can be seen as inferring soft
adjacency.

“GNNs that are winning the hardware lottery”

See Joshi (The Gradient; 2020).

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges → Transformers

Nonparametric rewiring

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges → Transformers

Nonparametric rewiring

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges → Transformers

Nonparametric rewiring

R(G)

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges → Transformers

Nonparametric rewiring

Latent graph inference

Rθ(G, X)

So… how do we
rewire a graph? Assume no edges → Deep Sets

Assume all edges → Transformers

Nonparametric rewiring

Latent graph inference

Ignores wealth of information

Hard to scale, hard to generalise

Discrete decisions – hard to backpropagate!

Option A: Diffuse the input graph structure

Graph Diffusion Convolution (GDC; Gasteiger et al., NeurIPS’19)

A great place to look for new edges is the input graph itself :)
Use Personalised PageRank diffusion to diffuse the edges of the input graph
Elegant and versatile, but relies on homophily, and drastically changes statistics

Option B: Surgically rewire the input graph

Stochastic Discrete Ricci Flow (SDRF; Topping, Di Giovanni et al., ICLR’22)

Key observation: edges with negative curvature are likely to be bottlenecked
Find edges with most negative Ricci curvature, and surgically add edges around them
Preserves input statistics, but curvature measure is local, and expensive to precompute

Option C: Precompute a propagation template

Expander Graph Propagation (EGP; Deac et al., LoG’22)

A “brutal” approach: generate a graph which does not need to have any relationship to the input
graph, but one that is excellent at globally-propagating information (expander graph)
Alternate GNN layers over the original graph and the expander
(Graph) Transformers a special case — fully-connected graphs are trivial dense expanders

Works well in practice! (no tuning :))

Works well in practice! (no tuning :))

New insights on oversquashing

We are now able to rigorously define over-squashing as the impedance of mixing of features
between the nodes (Di Giovanni, Rusch, et al., 2023):

Here, m is the depth of the GNN,
w is the maximal norm of its weights (e.g. in the message function), and
S/Q are functions of the input graph structure (adjacency matrix).

This expression depends on all of the below:
● The input graph topology (via S and Q)
● The GNN architecture (via m)
● The GNN parameters (via w)

New insights on oversquashing

We are now able to rigorously define over-squashing as the impedance of mixing of features
between the nodes (Di Giovanni, Rusch, et al., 2023):

Here, m is the depth of the GNN,
w is the maximal norm of its weights (e.g. in the message function), and
S/Q are functions of the input graph structure (adjacency matrix).

We prove that it is necessary for OSQ to be less than the required mixing under label yG

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

● If we fix m and let w vary, weights need to be large enough to allow mixing:

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

● If we fix m and let w vary, weights need to be large enough to allow mixing:

d-ary Tree of depth r; m = r/2 Complete graph of n nodes; m = 1

Grows with d! Graphs are harder than paths :) Grows with n! Redundant messages are a problem.

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

● If we fix m and let w vary, weights need to be large enough to allow mixing
○ But too large w is numerically unstable!

● If we fix w and let m vary, GNN needs to be deep enough to allow mixing

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

● If we fix m and let w vary, weights need to be large enough to allow mixing
○ But too large w is numerically unstable!

● If we fix w and let m vary, GNN needs to be deep enough to allow mixing
○ This depth must be at least on the order of the commute time 𝜏(v, u)
○ This is often significantly larger than the shortest-path distance – sometimes O(n3)!

The OSQ measure: some useful results!

● If we set w = ∞ (infinite capacity in the weights), OSQ = 0
○ “With large enough weights, I can separate anything”

● If we set w = 0 (zero weights), OSQ = ∞
○ “Without weights, every message is a constant, and hence cannot usefully mix”

● If we set 2m < d(u, v) (under-reaching), OSQ = ∞
○ “I cannot mix two nodes together if the GNN doesn’t reach one from the other”

● If we fix m and let w vary, weights need to be large enough to allow mixing
○ But too large w is numerically unstable!

● If we fix w and let m vary, GNN needs to be deep enough to allow mixing
○ This depth must be at least on the order of the commute time 𝜏(v, u)
○ This is often significantly larger than the shortest-path distance – sometimes O(n3)!
○ Expander graphs have very favourable commute times—justifying EGP :)

In conclusion…

● In most cases, we don’t have fully correct graphs to give our GNNs
○ And even when we do, we’d likely benefit from specialising them to the task at hand

In conclusion…

● In most cases, we don’t have fully correct graphs to give our GNNs
○ And even when we do, we’d likely benefit from specialising them to the task at hand

● Not all graphs are made equal, in terms of their suitability for message passing

○ Graphs with high commute times are detrimental to mixing, no matter the GNN*!

*our analysis does not yet cover GNNs with non-sum aggregators

In conclusion…

*our analysis does not yet cover GNNs with non-sum aggregators

● In most cases, we don’t have fully correct graphs to give our GNNs
○ And even when we do, we’d likely benefit from specialising them to the task at hand

● Not all graphs are made equal, in terms of their suitability for message passing

○ Graphs with high commute times are detrimental to mixing, no matter the GNN*!

● Rewiring likely to be a sufficient “missing piece” to explaining any discrete DL architecture
○ Hence, choosing the computational graph is a key unsolved problem in deep learning

In conclusion…

*our analysis does not yet cover GNNs with non-sum aggregators

● In most cases, we don’t have fully correct graphs to give our GNNs
○ And even when we do, we’d likely benefit from specialising them to the task at hand

● Not all graphs are made equal, in terms of their suitability for message passing

○ Graphs with high commute times are detrimental to mixing, no matter the GNN*!

● Rewiring likely to be a sufficient “missing piece” to explaining any discrete DL architecture
○ Hence, choosing the computational graph is a key unsolved problem in deep learning

● Currently, nonparametric rewiring hits the “sweet spot” between tractability and elegance

○ Can diffuse the graph, surgically rewire it, or use a known good template (expander)

In conclusion…

*our analysis does not yet cover GNNs with non-sum aggregators

● In most cases, we don’t have fully correct graphs to give our GNNs
○ And even when we do, we’d likely benefit from specialising them to the task at hand

● Not all graphs are made equal, in terms of their suitability for message passing

○ Graphs with high commute times are detrimental to mixing, no matter the GNN*!

● Rewiring likely to be a sufficient “missing piece” to explaining any discrete DL architecture
○ Hence, choosing the computational graph is a key unsolved problem in deep learning

● Currently, nonparametric rewiring hits the “sweet spot” between tractability and elegance

○ Can diffuse the graph, surgically rewire it, or use a known good template (expander)

● We have a formula for over-squashing, which you can use to assess suitability of graphs

Thank you.
Petar Veličković
petarv@google.com
https://petar-v.com

With many thanks to Michael Bronstein, Andreea Deac, Francesco Di
Giovanni, Marc Lackenby, Siddhartha Mishra and Konstantin Rusch

