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How can we leverage GNNs for
network optimization?



Outline

e What are computer networks and why should we manage
them efficiently?

e How can we efficiently manage computer networks?

e DRL meets GNNs: Routing Optimization in Optical
Networks



What are computer networks and why
should we manage them efficiently?




A collection of computers, servers, and
other devices linked together for the
purpose of sharing data and resources

Key Components:

1. Nodes: Devices such as computers,
servers, routers, and switches
2. Links: Physical cables or wireless
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connections used for data “— EEED
transmission S 172
3. Protocols: Set of rules governing data Internet

exchange and communication



Computer networks experienced a considerable growth in novel networked
applications, network traffic and connected devices' in the last years

e Stringent network requirements

- High throughput - Adapt to dynamic
topology latency

Low deterministic

'Cisco Annual Internet Report (2018—-2023) White Paper



Computer networks experienced a considerable growth in novel networked
applications, network traffic and connected devices' in the last years

e Stringent network requirements

- High throughput - Adapt to dynamic - Low deterministic
topology latency

Computer networks are becoming more complex and costly to manage

'Cisco Annual Internet Report (2018—-2023) White Paper



Why is network management important?

Network
Applications
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Why is network management important?

Network
Applications

@ Northbound APIs

[ Network Controller }
ﬁ Southbound APIs

Network Infrastructure

Different network applications with
heterogeneous network requirements
Real-time

Ultra-low latency

High throughput

Reliability
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Network management is costly
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How can we efficiently manage
computer networks?




The Network Digital Twin'2 (NDT) paradigm emerged as a key enabler for
efficient control and management of modern networks
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Digital ML-based network model

Mimics real network’s behaviour

( Digital World. Emulation
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'Paul Almasan, et al. "Network Digital Twin: Context, Enabling Technologies and Opportunities,” in IEEE Communications Magazine, doi: 101109/MCOM.001.2200012. 11
2Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18), 13789-13804.



Performance Network Digital Twin

Network Configuration
- Topology

- Link Capacity

- Routing
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Traffic Load
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Rusek, K., Sudrez-Varela, J., Aimasan, et. al. (2020). Routenet: Leveraging graph neural networks for network modeling and optimization in sdn. IEEE Journal on Selected Areas in Communications, 38(10), 2260-2270.
Ferriol-Galmés, M., Paillisse, J., Sudrez-Varela, J., Rusek, K., Xiao, S., Shi, X,, ... & Cabellos-Aparicio, A. (2023). RouteNet-Fermi: Network Modeling With Graph Neural Networks. [EEE/ACM Transactions on Networking.
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There are relevant academic, industrial and standardization efforts put to make the
NDT become a reality

e Research'?3

Z  ericssoncom  Pro

Network Digital Twin R DR K SRR | S
Network digital twins —

Use a virtual replica of your network to make your i

® Industry more efficient and productive Efss eidrss §iE: 2023 outlook and opportunities

Telefénica develops a digital twin to
improve the production of industrial parts

Workgroup: Internet Research Task Force
Internet-Draft: draft-irtf-nmrg-network-digital-twin-arch-02 ':WV\E'

Published: 24 October 2022 International
4 5 Intended Status:  Informational 1 ETF ITU-T Y.3090 (02/2022) Telecommunication
. y Expires: 27 April 2023 Union
Authors:
C.Zhou H.Yang X. Duan D. Lopez A. Pastor Q. Wu M. Boucadair Digi(al twin network — Requiremems and architecture

China Mobile  China Mobile  China Mobile  TelefonicaI+D  Telefonica I+D  Huawei  Orange

Recommendation ITU-T Y.3090 describes the requirements and architecture of a digital twin network (DTN). A digital twin network is a
virtual representation of a physical network. It is useful for analysing, diagnosing, emulating, and controlling the physical network based
on data, model, and interface to achieve a real-time interactive mapping between a physical network and a digital twin network.

C.Jacquenet
Orange

Digital Twin Network: Concepts and Reference
Architecture

"Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18), 13789-13804.

2Nguyen, H. X., Trestian, R., To, D., & Tatipamula, M. (2021). Digital twin for 5G and beyond. IEEE Communications Magazine, 59(2), 10-15.

SFerriol-Galmés, M., et al. (2022). Building a digital twin for network optimization using graph neural networks. Computer Networks, 217, 109329. 13
4C. Zhou et al., “Digital Twin Network: Concepts and Reference Architecture,” IETF, Internet-Draft, 2022.

5ITU-T, “Digital twin network: Requirements and architecture,” Recommendation ITU-T Y.3090, 2022.



Network Digital Twin
general architecture’
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Network optimization consists on using effectively the network resources

v/ Better utilization of limited resources

v Reduces operational costs
v Increase QoE

Network
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=
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Network optimization consists on using effectively the network resources

v
v
v

XXX

Better utilization of limited resources

Reduces operational costs
Increase QoE

Break the network
Costly process
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NDTs enable efficient real-time network
optimization™?

v Test new configurations without
compromising the physical network

v High quality configurations

v Online optimization

Network a

Intent a2
(e.g., min avg
delay) Network Operator

12)

Network Network Optimizer
state e
Configuration
Digital Twin
-
Digital world
Physical world

Deploy new

Data ﬁ
collection configuration

&B=5

=
Physical Network

'Paul Almasan, et al. "Network Digital Twin: Context, Enabling Technologies and Opportunities,” in IEEE Communications Magazine), doi: 10.1109/MCOM.001.2200012. 18
2Ferriol-Galmés, M., et al. (2022). Building a digital twin for network optimization using graph neural networks. Computer Networks, 217, 109329.



How can we implement the
Network Optimizer?



Heuristics1 2

Mathematical Optimizers?"4

(e.g., CP, ILP)

SoA Machine Learning5’6

Network Optimizer

(3)

Network Configuration

state

*Existing methods in 2019-2021

'Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528).

2Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56.

3Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847.

“Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28. 20
5Chen, X, et. al. (2018). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2).
8Sudrez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.



SoA Machine Learning

We were failing to learn in computer networks

e In some cases worse than simple well-known heuristics
e Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to
prevent learning graph

Poor performance when evaluated on data different than in training (does not generalize)

e Require re-training the ML model when there is a change in the network (e.g., link failure)

21
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NSFNET Backbone network
IBM NSS nodes, logical 448kbps topology
July 1988 - July 1989

Networks are fundamentally represented as graphs
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Limitations of traditional NNs

e Networks are variable in size (number of links and nodes)
e Information is relational

e Modeling networks with traditional NNs is very hard
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We proposed a Deep Reinforcement Learning + Graph Neural Networks architecture

for routing optimization'

Network &
Intent a2
Network Operator
DRL Agent

[ Graph Neural Network ]

Network

Configuration
state

Digital Twin
=

'Paul Almasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
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Routing Optimization

A Network
Topology
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Routing Optimization

A Traffic
Matrix: Source
to Destination
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Routing Optimization

A Traffic
Matrix: Source
to Destination

d
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A0 |2|3]2]9
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E|9]/2 3110

Traffic Matrix (TM)

Which is the best routing configuration that satisfies some

A Network
Topology

A src-dest
Routing
Configuration

constraint? E.g., minimize link congestion
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DRL meets GNNs:
Routing Optimization in Optical Networks



Routing optimization scenario’

1. Network state composed by a
network topology with link capacities

2. Set of network traffic demands

3. An agent that allocates the
incoming traffic demands on the
network state

Objective — Maximize the number of traffic demands allocated

- Network state
- Traffic demand
- Reward

DRL Agent

[ Graph Neural Network ]

_>4

) N <
ENE@N |
\ ) \ a
- — -
OTN state
+
ik
Set traffic demands
{src, dst, bandwidth}

'Paul Almasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.

- ACTION:

Routing policy for the
current traffic
demand
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Proposed solution

DRL Agent implements the Deep Q-Network’ v DRL Agent
(DQN) learning method e [Graph Neural Network ]
Integrate GNNs into DRL agents and we s —s
design a problem specific action space . N c
@ % % - ACTION:
S Routing policy for the
\|4 \| “ current traffic
[ - S demand
. R R OTN state
We used a NDT implemented in python with +
the minimum functionalities needed for this ik
L. . Set traffic demands
optimization problem {src, dst, bandwidth}

32

"Mnih, V., Kavukcuoglu, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.



Action representation

Introduced within the network state

Choose one path to allocate from the pre-defined set of K paths for each
traffic demand

GNN | 473
Path #1
GNN | 405
Path # 2
hs
Notation Description GN N —>0.28
X1 Link available capacity Path #3
. . X2 Link Betweenness
Trafflc dema nd- {:1 ’ 5, 8} X3 Action vector (bandwidth allocated)

X4 —XN Zero padding

DRL agent samples
action and applies it to
network environment
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GNN implementation

Execute T times

Message passing - Update Algorithm 1 Message Passing

For all neighbors
. Input : x;

Output : h'' ¢
for each [ € L do
h? e [Xl,O...,O]
fort=1to 7T do
for each [ € £ do
]"’Il,t+1 = Zz‘eN(l) m (hi, h;)
AT =u (B}, M)
rdt < ) 10l
q < R(rdt)

el v 3 aBe S8 Ui e

For all neighbors :

of link h,

'Paul Almasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.

34



Experimental Results



Baselines

Action space for all baselines is limited to K=4 paths'

e SoA DRL% The DRL agent implements a standard Fully Connected NN and they use
an elaborated representation of the network state into a matrix

e Theoretical Fluid: Traffic demands are be split into the K paths proportionally to
the available capacity. This routing policy is aimed at avoiding congestion on links

e Load Balancing (LB): Selects uniformly one path among the K candidate shortest
paths to allocate the traffic demand

'Paul Almasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.

2Sudrez-Varela, J., Mestres, A, Yu, J., Kuang, L., Feng, H., et al., (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.
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Evaluation |: Generalization

We trained on the Nsfnet' topology a SoA DRL agent? and our DRL+GNN architecture
and evaluated on the Geant2® topology

o 1.0 ,
o AR >
21200 o8
S 1250 S
Nsfnet 8 8si
© 1000 >
2 750 }50 0.4
)]
5 a0 S02
i [«
v 250 R
. : 0.0 . +
DRLGNN DRL traimed -10  0.00.51.015202530354.0
; rainedn ¢ DRL+GNN relative
different network
Geant2 (NSFNet) performance to DRL

"Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378.
2Sudrez-Varela, J., Mestres, A, Yu, J., Kuang, L., Feng, H., et al., (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558. 37
3Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.



Evaluation |: Generalization

We trained on the Nsfnet' topology a SoA DRL agent? and our DRL+GNN architecture
and evaluated on the Geant2® topology
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Our DRL+GNN agent is able to generalize to the unseen Geant2 topology

"Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378.
2Sudrez-Varela, J., Mestres, A, Yu, J., Kuang, L., Feng, H., et al., (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558. 38
3Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.



Evaluation ll: Link failure

Changes in network connectivity are unpredictable and they have a significant impact
in protocol convergence and network performance

We considered a range of scenarios that can experience up to 10 link failures

e Links are randomly removed from the Geant2 topology
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'Paul Aimasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
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Evaluation Il
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The DRL+GNN architecture is robust to operate in real-world topologies that largely
differ from the topologies seen during training

'Paul Aimasan, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
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Conclusions



Method

Execution cost Performance

Heuristics1’2

Low

Mathematical Optimizers?”4

(e.g., CP, ILP)

SoA Machine Learning5’6

Our DRL+GNN solution

Low (generalization)

(2]

Network
state

Network Optimizer

Configuration

Digital Twin

=

'Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528).
2Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56.

3Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting

over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847.

“Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28.

5Chen, X, et. al. (2018). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2).

8Sudrez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.
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Summary

NDTs enable the development of more efficient
network control and management tools in

(NETWORK )
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DRL+GNN | ‘ ‘

e High optimization performance and fast
inference
e Small execution cost (no re-training)

Source code and datasets are publicly available'
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'https://github.com/knowledgedefinednetworking/DRL-GNN


https://github.com/knowledgedefinednetworking/DRL-GNN

Thank you!

Please reach out if you want to know more about applications of GNNs in mobile networks

u @PaulAlmasan m Paul Almasan
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