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How can we leverage GNNs for 
network optimization?
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● What are computer networks and why should we manage 
them efficiently?

● How can we efficiently manage computer networks?

● DRL meets GNNs: Routing Optimization in Optical 
Networks
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What are computer networks and why 
should we manage them efficiently?
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A collection of computers, servers, and 
other devices linked together for the 
purpose of sharing data and resources

Router

Internet

Router

Servers

Key Components:

1. Nodes: Devices such as computers, 
servers, routers, and switches

2. Links: Physical cables or wireless 
connections used for data 
transmission

3. Protocols: Set of rules governing data 
exchange and communication



Computer networks experienced a considerable growth in novel networked 
applications, network traffic and connected devices1 in the last years

● Stringent network requirements

1Cisco Annual Internet Report (2018–2023) White Paper
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- Low deterministic 
latency

- High throughput - Adapt to dynamic 
topology



1Cisco Annual Internet Report (2018–2023) White Paper
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- Adapt to dynamic 
topology

- Low deterministic 
latency

Computer networks are becoming more complex and costly to manage

- High throughput

Computer networks experienced a considerable growth in novel networked 
applications, network traffic and connected devices1 in the last years

● Stringent network requirements



Why is network management important?
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Network Infrastructure

Network 
Applications

Network Controller

Northbound APIs

Southbound APIs



Why is network management important?
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Network management is costly

Different network applications with 
heterogeneous network requirements

✓ Real-time 

✓ Ultra-low latency 

✓ High throughput 

✓ Reliability 

QoENetwork Infrastructure

Network 
Applications

Network Controller

Northbound APIs

Southbound APIs



How can we efficiently manage 
computer networks?



The Network Digital Twin1,2 (NDT) paradigm emerged as a key enabler for 
efficient control and management of modern networks

111Paul Almasan, et al. ”Network Digital Twin: Context, Enabling Technologies and Opportunities,” in IEEE Communications Magazine, doi: 10.1109/MCOM.001.2200012.
2Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18), 13789-13804.

✔ Digital ML-based network model

✔ Mimics real network’s behaviour

✔ Accurate estimated performance metrics

✔ Fast inference
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Performance Network Digital Twin

Rusek, K., Suárez-Varela, J., Almasan, et. al. (2020). Routenet: Leveraging graph neural networks for network modeling and optimization in sdn. IEEE Journal on Selected Areas in Communications, 38(10), 2260-2270.
Ferriol-Galmés, M., Paillisse, J., Suárez-Varela, J., Rusek, K., Xiao, S., Shi, X., ... & Cabellos-Aparicio, A. (2023). RouteNet-Fermi: Network Modeling With Graph Neural Networks. IEEE/ACM Transactions on Networking.

Network Configuration
- Topology
- Link Capacity
- Routing

Traffic Load
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There are relevant academic, industrial and standardization efforts put to make the 
NDT become a reality

1Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18), 13789-13804.
2Nguyen, H. X., Trestian, R., To, D., & Tatipamula, M. (2021). Digital twin for 5G and beyond. IEEE Communications Magazine, 59(2), 10-15.
3Ferriol-Galmés, M., et al. (2022). Building a digital twin for network optimization using graph neural networks. Computer Networks, 217, 109329.
4C. Zhou et al., “Digital Twin Network: Concepts and Reference Architecture,” IETF, Internet-Draft, 2022.
5ITU-T, “Digital twin network: Requirements and architecture,” Recommendation ITU-T Y.3090, 2022.

● Research1,2,3

● Industry

● Standards4,5
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Network Operator

Data 
collection Configure

OptimizerIntent-based 
renderer

1https://datatracker.ietf.org/doc/html/draft-paillisse-nmrg-performance-digital-twin-01 
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Network Digital Twin 
general architecture1

Physical Network



15

Network Operator

Data 
collection Configure

OptimizerIntent-based 
renderer

1https://datatracker.ietf.org/doc/html/draft-paillisse-nmrg-performance-digital-twin-01 

M
an

ag
em

en
t 

Pl
an

e

Intent-Based Interface

Measurement Interface Configuration Interface

Network Digital Twin 
general architecture1

Physical Network



16

Network optimization consists on using effectively the network resources 

Network 
Intent
(e.g., min avg       
delay) Network Operator

Network 
state

Configuration

✔ Better utilization of limited resources
✔ Reduces operational costs
✔ Increase QoE

1

2 3

Physical Network
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Network optimization consists on using effectively the network resources 

Network Operator

Network 
state

Configuration
2 3✖ Break the network

✖ Costly process
✖ Online optimization

Physical Network

Network 
Intent
(e.g., min avg       
delay)

1

✔ Better utilization of limited resources
✔ Reduces operational costs
✔ Increase QoE
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NDTs enable efficient real-time network 
optimization1,2

Network Operator

Network 
state

Configuration

2

3

Physical Network

✔ Test new configurations without 
compromising the physical network

✔ High quality configurations
✔ Online optimization

Data 
collection

Deploy new 
configuration

Digital world

Physical world

1Paul Almasan, et al. ”Network Digital Twin: Context, Enabling Technologies and Opportunities,” in IEEE Communications Magazine), doi: 10.1109/MCOM.001.2200012.
2Ferriol-Galmés, M., et al. (2022). Building a digital twin for network optimization using graph neural networks. Computer Networks, 217, 109329.

Network 
Intent
(e.g., min avg       
delay)

1



How can we implement the 
Network Optimizer?



20

Method* Execution cost Performance

Heuristics1,2 Low Low

Mathematical Optimizers3,4

(e.g., CP, ILP)
High High

SoA Machine Learning5,6 High (training) High

Our DRL+GNN solution Low High

Network 
state

Configuration
2 3

1Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528).
2Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56.
3Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847.
4Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28.
5Chen, X., et. al. (2018). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2).
6Suárez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.

*Existing methods in 2019-2021
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We were failing to learn in computer networks 

● In some cases worse than simple well-known heuristics
● Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to 

prevent learning graph

Poor performance when evaluated on data different than in training (does not generalize)

● Require re-training the ML model when there is a change in the network (e.g., link failure)

SoA Machine Learning
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We were failing to learn in computer networks 

● In some cases worse than simple well-known heuristics
● Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to 

prevent learning graph

Poor performance when evaluated on data different than in training (does not generalize)

● Require re-training the ML model when there is a change in the network (e.g., link failure)

SoA Machine Learning

The main reason for this is that standard Neural Networks 
are not suited to learn information structured as a graph
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Networks are fundamentally represented as graphs



Limitations of traditional NNs

● Networks are variable in size (number of links and nodes)
● Information is relational 
● Modeling networks with traditional NNs is very hard

24Similarity
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DRL Agent

Graph Neural Network

We proposed a Deep Reinforcement Learning + Graph Neural Networks architecture 
for routing optimization1

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.

Network 
Intent

Network Operator

Network 
state

Configuration

1

2 3

Physical Network



A Network 
Topology
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Routing Optimization



A Network 
Topology

A Traffic 
Matrix: Source 
to Destination
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A B C D E
A 0 2 3 2 9
B 1 0 2 1 6
C 2 4 0 1 1
D 1 6 2 0 5
E 9 2 3 1 0

Traffic Matrix (TM)

Routing Optimization



A Network 
Topology

A Traffic 
Matrix: Source 
to Destination
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A B C D E
A 0 2 3 2 9
B 1 0 2 1 6
C 2 4 0 1 1
D 1 6 2 0 5
E 9 2 3 1 0

Traffic Matrix (TM)

A src-dest 
Routing 

Configuration

Routing Optimization



A Network 
Topology

A Traffic 
Matrix: Source 
to Destination
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A B C D E
A 0 2 3 2 9
B 1 0 2 1 6
C 2 4 0 1 1
D 1 6 2 0 5
E 9 2 3 1 0

Traffic Matrix (TM)

A src-dest 
Routing 

Configuration

Which is the best routing configuration that satisfies some 
constraint? E.g., minimize link congestion

Routing Optimization



30

DRL meets GNNs:                                
Routing Optimization in Optical Networks



Routing optimization scenario1

1. Network state composed by a 
network topology with link capacities

2. Set of network traffic demands

3. An agent that allocates the 
incoming traffic demands on the 
network state

31

- ACTION:
Routing policy for the 
current traffic 
demand

- Network state
- Traffic demand
- Reward

Lightpaths

Set traffic demands 
{src, dst, bandwidth}

OTN state
+

Objective → Maximize the number of traffic demands allocated

DRL Agent

Graph Neural Network

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.



Proposed solution 

DRL Agent implements the Deep Q-Network1 
(DQN) learning method

Integrate GNNs into DRL agents and we 
design a problem specific action space

We used a NDT implemented in python with 
the minimum functionalities needed for this 
optimization problem

32

- ACTION:
Routing policy for the 
current traffic 
demand

- Network state
- Traffic demand
- Reward

Lightpaths

DRL Agent

Set traffic demands 
{src, dst, bandwidth}

OTN state
+

Graph Neural Network

1Mnih, V., Kavukcuoglu, et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.



Action representation 
Introduced within the network state

Choose one path to allocate from the pre-defined set of K paths for each 
traffic demand

33

GNN
Path # 1

1.73

GNN
Path # 2

1.05

GNN
Path # 3

0.28

DRL agent samples 
action and applies it to 
network environment

Traffic demand: {1, 5, 8}
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GNN implementation

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
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Experimental Results
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Action space for all baselines is limited to K=4 paths1

● SoA DRL2: The DRL agent implements a standard Fully Connected NN and they use 
an elaborated representation of the network state into a matrix 

● Theoretical Fluid: Traffic demands are be split into the K paths proportionally to 
the available capacity. This routing policy is aimed at avoiding congestion on links

● Load Balancing (LB): Selects uniformly one path among the K candidate shortest 
paths to allocate the traffic demand

Baselines

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
2Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., et al.,  (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.



Evaluation I: Generalization
We trained on the Nsfnet1 topology a SoA DRL agent2 and our DRL+GNN architecture 
and evaluated on the Geant23 topology

37

Nsfnet

Geant2

1Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378.
2Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., et al.,  (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.
3Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.

DRL trained in a 
different network 

(NSFNet)
2



We trained on the Nsfnet1 topology a SoA DRL agent2 and our DRL+GNN architecture 
and evaluated on the Geant23 topology
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Our DRL+GNN agent is able to generalize to the unseen Geant2 topology

Nsfnet

Geant2

1Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378.
2Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., et al.,  (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.
3Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.

DRL trained in a 
different network 

(NSFNet)
2

Evaluation I: Generalization
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Changes in network connectivity are unpredictable and they have a significant impact 
in protocol convergence and network performance

We considered a range of scenarios that can experience up to 10 link failures

● Links are randomly removed from the Geant2 topology

Evaluation II: Link failure



Evaluation III
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(a) 180 synthetic topologies (20 
different per topology size)

(b)    232 real-world topologies1 

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.



Evaluation III
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(a) 180 synthetic topologies (20 
different per topology size)

(b)    232 real-world topologies1 

The DRL+GNN architecture is robust to operate in real-world topologies that largely 
differ from the topologies seen during training

1Paul Almasan, et al.  ”Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case.” Computer Communications, 196, pp. 184-194, 2022.
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Conclusions
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Method Execution cost Performance

Heuristics1,2 Low Low

Mathematical Optimizers3,4

(e.g., CP, ILP)
High High

SoA Machine Learning5,6 High (training) High

Our DRL+GNN solution Low (generalization) High

1Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528).
2Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56.
3Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847.
4Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28.
5Chen, X., et. al. (2018). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2).
6Suárez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.

Network 
state

Configuration
2 3



Summary

NDTs enable the development of more efficient 
network control and management tools in 
modern networks

The DRL+GNN represents a first step towards 
ML-based optimizers that generalize to other 
topologies

● High optimization performance and fast 
inference

● Small execution cost (no re-training)

Source code and datasets are publicly available1
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1https://github.com/knowledgedefinednetworking/DRL-GNN

https://github.com/knowledgedefinednetworking/DRL-GNN


Thank you!

@PaulAlmasan Paul Almasan

Please reach out if you want to know more about applications of GNNs in mobile networks


