Network Optimization with GNNs and Deep Reinforcement Learning

Workshop on Explainability and Applicability of Graph Neural Networks 06/09/23 - 08/09/23 Kassel, Germany

Paul Almasan

Joint work with José Suárez-Varela, Krzysztof Rusek, Prof. Pere Barlet-Ros and Prof. Albert Cabellos-Aparicio

How can we leverage GNNs for network optimization?

Outline

 <u>What</u> are computer networks and <u>why</u> should we manage them efficiently?

• **How** can we efficiently manage computer networks?

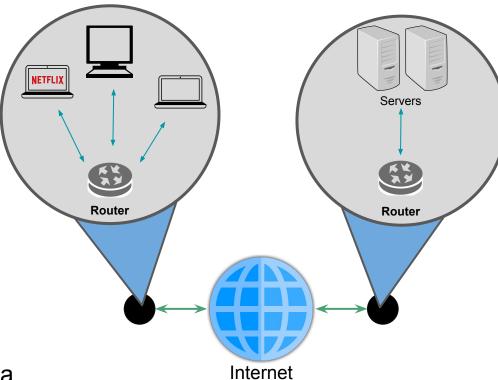
 DRL meets GNNs: Routing Optimization in Optical Networks

<u>What are computer networks and why</u> should we manage them efficiently?

A collection of computers, servers, and other devices linked together for the purpose of **sharing data and resources**

Key Components:

- 1. **Nodes**: Devices such as computers, servers, routers, and switches
- 2. Links: Physical cables or wireless connections used for data transmission
- 3. **Protocols**: Set of rules governing data exchange and communication



Computer networks experienced a considerable growth in novel networked applications, network traffic and connected devices¹ in the last years

• Stringent network requirements

- High throughput

 Adapt to dynamic topology

- Low deterministic latency Computer networks experienced a considerable growth in novel networked applications, network traffic and connected devices¹ in the last years

• Stringent network requirements

- High throughput

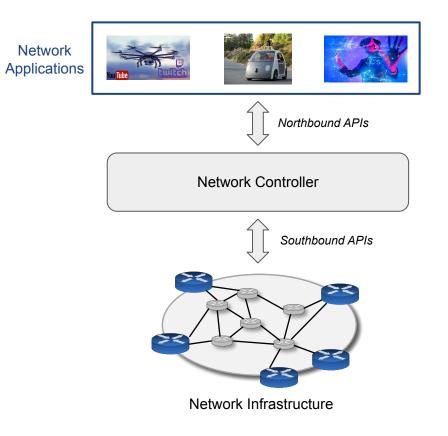
Adapt to dynamic

topology

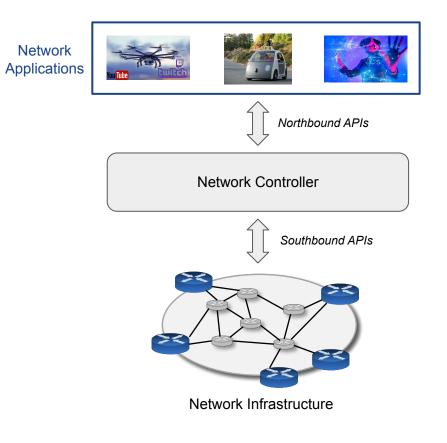
 Low deterministic latency

Computer networks are becoming more complex and costly to manage

Why is network management important?



Why is network management important?



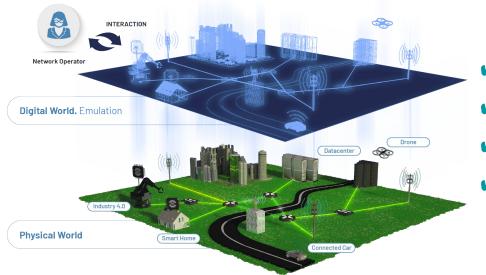
Different network applications with heterogeneous network requirements

- Real-time
- Ultra-low latency
- High throughput
- Reliability

Network management is costly

How can we efficiently manage computer networks?

The Network Digital Twin^{1,2} (NDT) paradigm emerged as a key enabler for efficient control and management of modern networks



- Digital ML-based network model
- Mimics real network's behaviour
- Accurate estimated performance metrics
- Fast inference

Performance Network Digital Twin

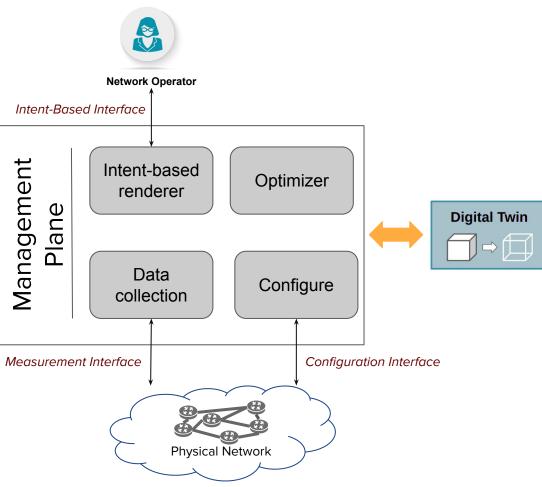
There are relevant academic, industrial and standardization efforts put to make the NDT become a reality

• Research^{1,2,3}

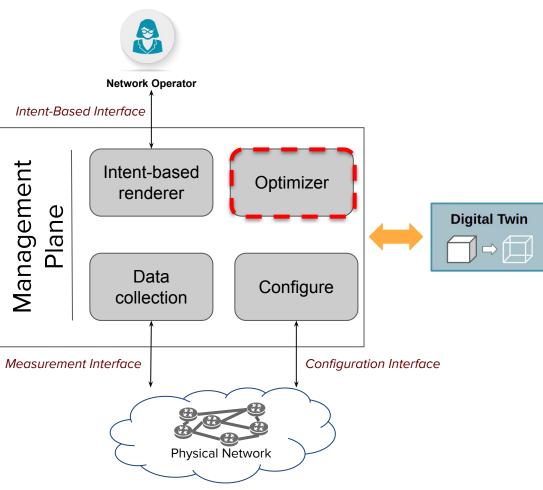
improve the production of industrial parts

¹Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of Things Journal, 8(18), 13789-13804.
²Nguyen, H. X., Trestian, R., To, D., & Tatipamula, M. (2021). Digital twin for 5G and beyond. IEEE Communications Magazine, 59(2), 10-15.
³Ferriol-Galmés, M., et al. (2022). Building a digital twin for network optimization using graph neural networks. Computer Networks, 217, 109329.
⁴C. Zhou et al., "Digital Twin Network: Concepts and Reference Architecture," IETF, Internet-Draft, 2022.
⁵ITU-T, "Digital twin network: Requirements and architecture," Recommendation ITU-T X.3090, 2022.

Network Digital Twin general architecture¹

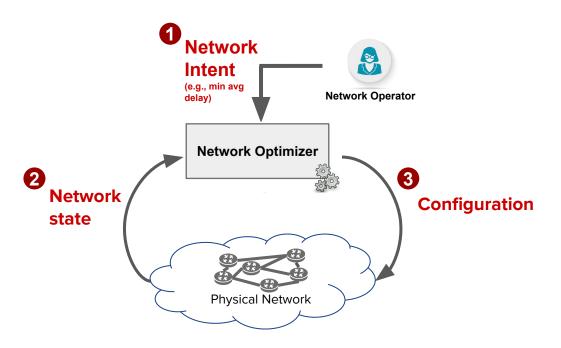


Network Digital Twin general architecture¹



Network optimization consists on using effectively the network resources

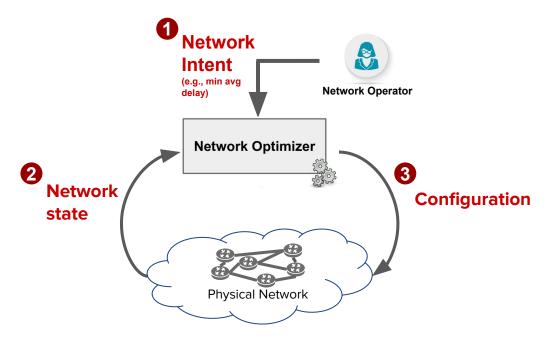
- Better utilization of limited resources
- Reduces operational costs
- Increase QoE



Network optimization consists on using effectively the network resources

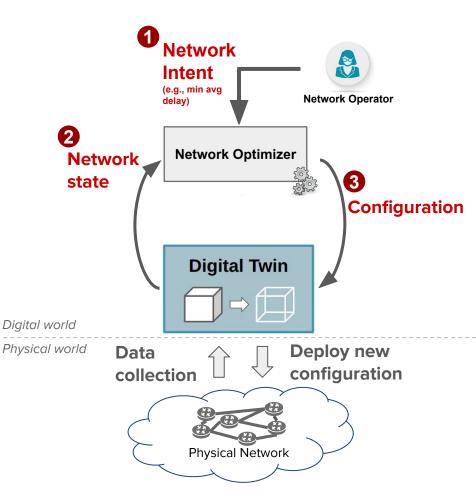
- Better utilization of limited resources
- Reduces operational costs
- Increase QoE

- Break the network
- Costly process
- Online optimization



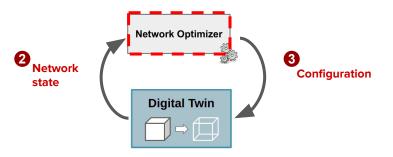
NDTs enable efficient real-time network optimization^{1,2}

- Test new configurations without compromising the physical network
- High quality configurations
- Online optimization



How can we implement the Network Optimizer?

Method*	Execution cost	Performance
Heuristics ^{1,2}	Low	Low
Mathematical Optimizers ^{3,4} (e.g., CP, ILP)	High	High
SoA Machine Learning ^{5,6}	High (training)	High



*Existing methods in 2019-2021

¹Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528).

²Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56.

³Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847.

⁴Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28.

⁵Chen, X., et. al. (2018). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2).

⁶Suárez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.

SoA Machine Learning

We were failing to learn in computer networks

- In some cases worse than simple well-known heuristics
- Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to prevent learning graph

Poor performance when evaluated on data different than in training (does not generalize)

• Require **re-training the ML model when there is a change in the network** (e.g., link failure)

SoA Machine Learning

We were failing to learn in computer networks

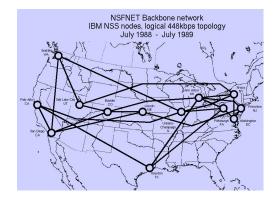
- In some cases worse than simple well-known heuristics
- Ad-hoc solutions tailored to specific problems, in some cases transforming the problem to prevent learning graph

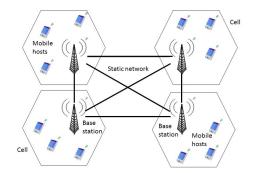
Poor performance when evaluated on data different than in training (does not generalize)

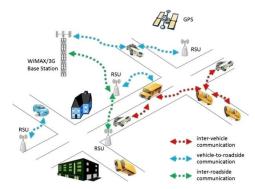
• Require **re-training the ML model when there is a change in the network** (e.g., link failure)

The main reason for this is that standard Neural Networks are not suited to learn information structured as a graph

Networks are fundamentally represented as graphs

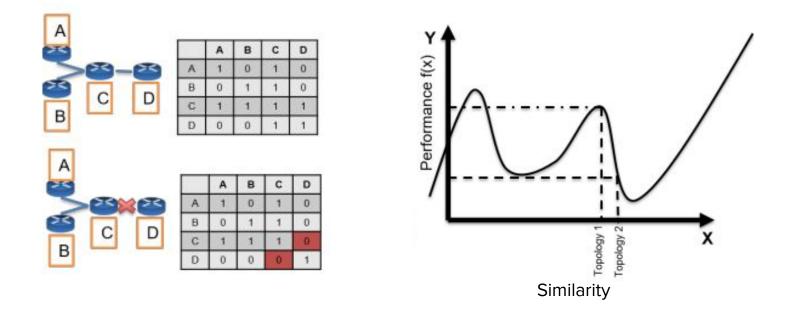




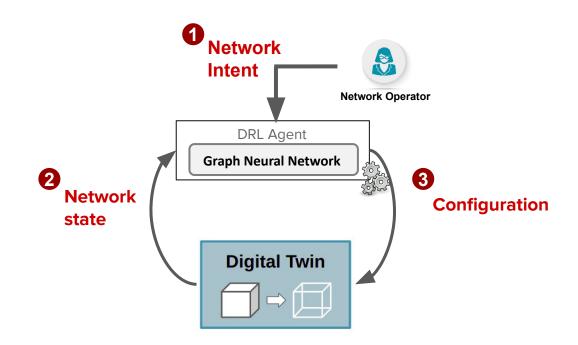


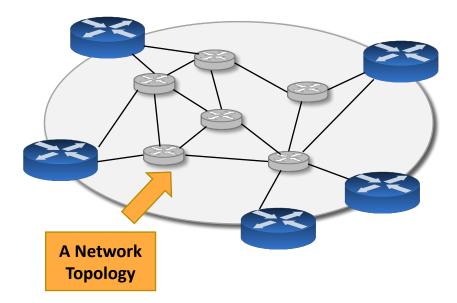
Limitations of traditional NNs

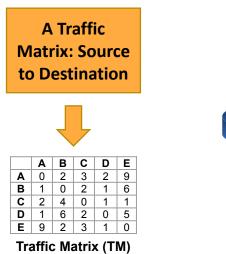
- Networks are variable in size (number of links and nodes)
- Information is relational
- Modeling networks with traditional NNs is very hard

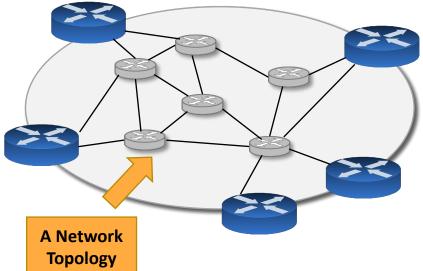


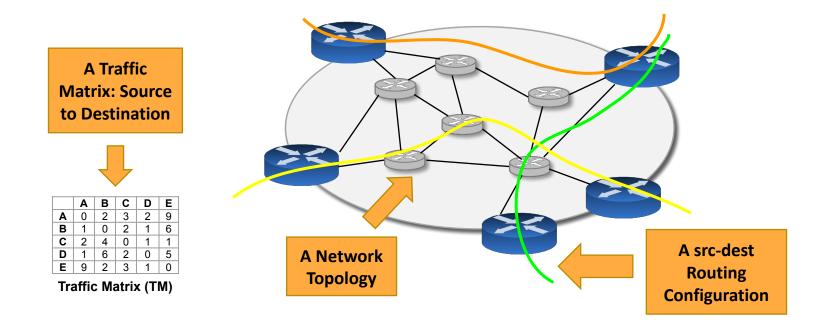
We proposed a **Deep Reinforcement Learning + Graph Neural Networks architecture** for routing optimization¹

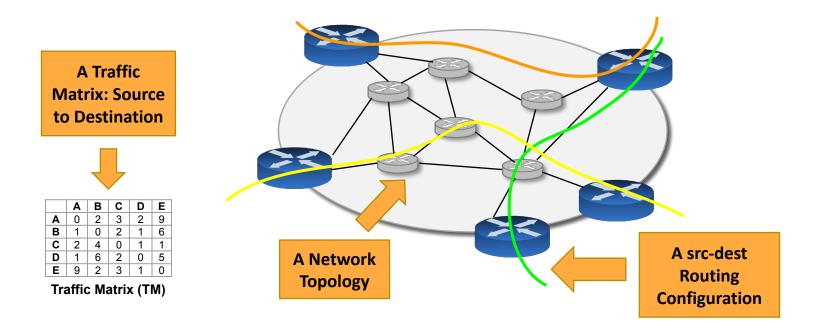












Which is the best routing configuration that satisfies some constraint? E.g., minimize link congestion

DRL meets GNNs: Routing Optimization in Optical Networks

Routing optimization scenario¹

1. **Network state** composed by a network topology with link capacities

2. Set of network traffic demands

3. An agent that allocates the incoming traffic demands on the network state

$\textbf{Objective} \rightarrow \textbf{Maximize the number of traffic demands allocated}$

Network state

- Traffic demand

Reward

DRL Agent

Graph Neural Network

OTN state

Set traffic demands

{src, dst, bandwidth}

Lightpaths

- ACTION:

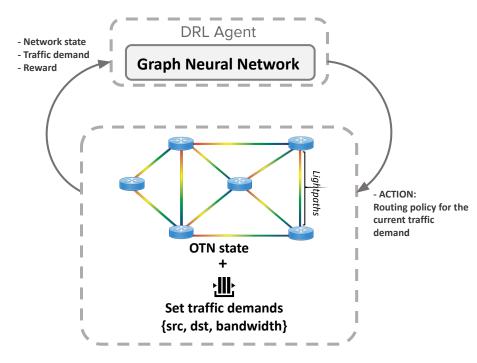
Routing policy for the current traffic demand

Proposed solution

DRL Agent implements the **Deep Q-Network**¹ (DQN) learning method

Integrate GNNs into DRL agents and we design a problem specific action space

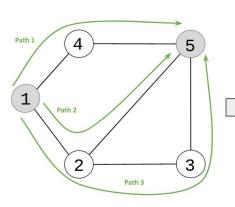
We used a **NDT implemented in python with the minimum functionalities** needed for this optimization problem



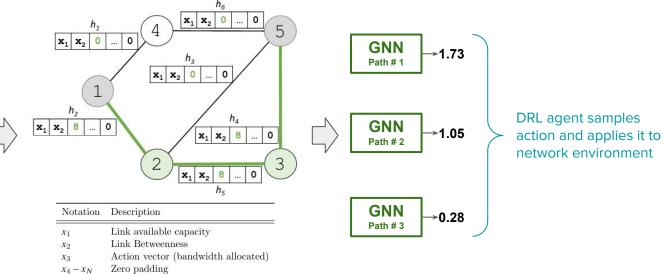
Action representation

Introduced within the network state

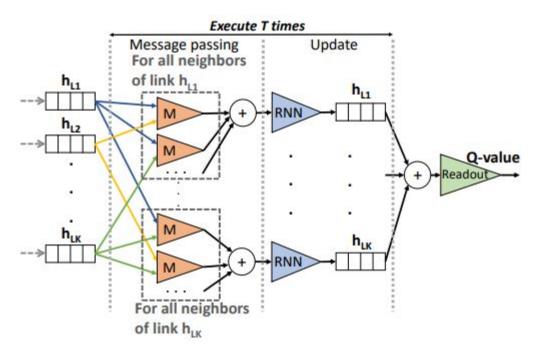
Choose one path to allocate from the pre-defined set of *K* paths for each traffic demand



Traffic demand: {1, 5, 8}



GNN implementation



Alg	Algorithm 1 Message Passing				
	Input : \mathbf{x}_l				
	Output : \mathbf{h}_l^T, q				
1:	for each $l \in \mathcal{L}$ do				
2:	$h_l^0 \leftarrow [\mathbf{x}_l, 0 \dots, 0]$				
3:	for $t = 1$ to T do				
4:	for each $l \in \mathcal{L}$ do				
5:	$M_l^{t+1} = \sum_{i \in N(l)} m\left(h_l^t, h_i^t\right)$				
6:	$h_l^{t+1} = u\left(h_l^t, M_l^{t+1}\right)$				
7:	$rdt \leftarrow \sum_{l \in \mathcal{L}} h_l$				
8:	$q \leftarrow R(rdt)$				

Experimental Results

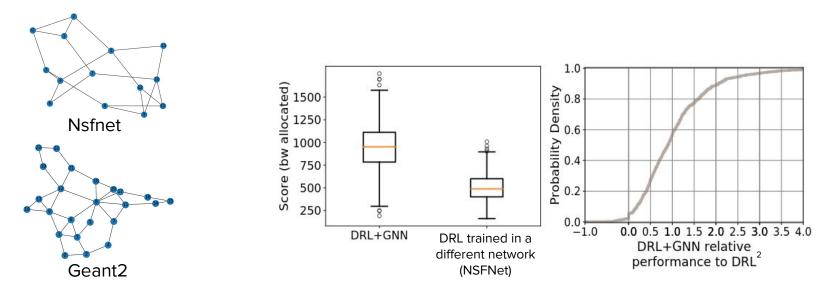
Baselines

Action space for all baselines is limited to **K=4 paths¹**

- SoA DRL²: The DRL agent implements a standard Fully Connected NN and they use an elaborated representation of the network state into a matrix
- Theoretical Fluid: Traffic demands are be split into the K paths proportionally to the available capacity. This routing policy is aimed at avoiding congestion on links
- Load Balancing (LB): Selects uniformly one path among the K candidate shortest paths to allocate the traffic demand

Evaluation I: Generalization

We trained on the Nsfnet¹ topology a SoA DRL agent² and our DRL+GNN architecture and evaluated on the Geant2³ topology

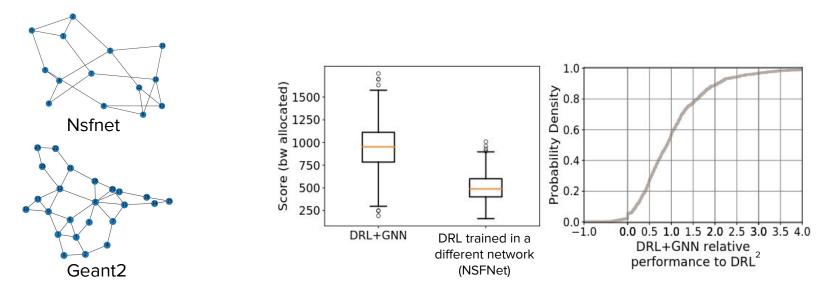


¹Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378. ²Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., et al., (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558. ³Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.

37

Evaluation I: Generalization

We trained on the Nsfnet¹ topology a SoA DRL agent² and our DRL+GNN architecture and evaluated on the Geant2³ topology



Our DRL+GNN agent is able to generalize to the unseen Geant2 topology

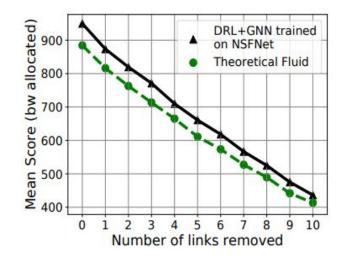
¹Hei, X., Zhang, J., Bensaou, B., & Cheung, C. C. (2004). Wavelength converter placement in least-load-routing-based optical networks using genetic algorithms. Journal of Optical Networking, 3(5), 363-378. ²Suárez-Varela, J., Mestres, A., Yu, J., Kuang, L., Feng, H., et al., (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558. ³Barreto, F., Wille, E. C., & Nacamura Jr, L. (2012). Fast emergency paths schema to overcome transient link failures in ospf routing. arXiv preprint arXiv:1204.2465.

Evaluation II: Link failure

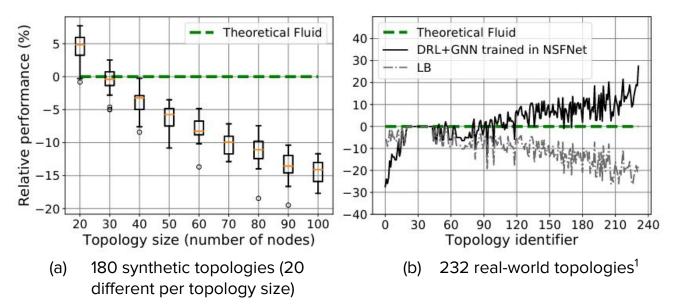
Changes in network connectivity are unpredictable and they have a significant impact in protocol convergence and network performance

We considered a range of scenarios that can experience up to 10 link failures

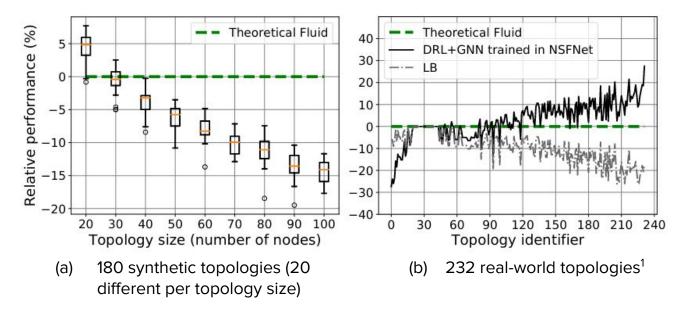
• Links are randomly removed from the Geant2 topology



Evaluation III

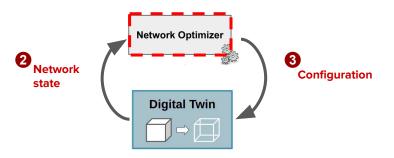


Evaluation III



The DRL+GNN architecture is **robust to operate in real-world topologies** that largely differ from the topologies seen during training

Method	Execution cost	Performance
Heuristics ^{1,2}	Low	Low
Mathematical Optimizers ^{3,4} (e.g., CP, ILP)	High	High
SoA Machine Learning ^{5,6}	High (training)	High
Our DRL+GNN solution	Low (generalization)	High



¹Fortz, B., & Thorup, M. (2000, March). Internet traffic engineering by optimizing OSPF weights. In Proceedings IEEE INFOCOM 2000. (Vol. 2, pp. 519-528). ²Wang, N., Ho, K. H., Pavlou, G., & Howarth, M. (2008). An overview of routing optimization for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1), 36-56. ³Gong, L., et. al. (2013). Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. Journal of Optical Communications and Networking, 5(8), 836-847. ⁴Hartert, R., Vissicchio, et. al. (2015). A declarative and expressive approach to control forwarding paths in carrier-grade networks. ACM SIGCOMM computer communication review, 45(4), 15-28. ⁶Chen, X., et. al. (2019). Deep-RMSA: A deep-reinforcement-learning routing, modulation and spectrum assignment agent for elastic optical networks. In Optical Fiber Communication Conference (pp. W4F-2). ⁶Suárez-Varela, et. al. (2019). Routing in optical transport networks with deep reinforcement learning. Journal of Optical Communications and Networking, 11(11), 547-558.

43

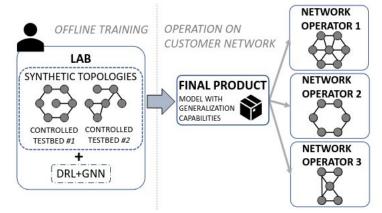
Summary

NDTs enable the development of more efficient network control and management tools in modern networks

The DRL+GNN represents a first step towards ML-based optimizers that generalize to other topologies

- High optimization performance and fast inference
- Small execution cost (no re-training)

Source code and datasets are publicly available¹



Thank you!

Please reach out if you want to know more about applications of GNNs in mobile networks

