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Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing
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Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?
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Random Walks for Graph Learning



Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks

• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]
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Intuition based on random walks, deterministic computation

4/19



Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks
• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0



p

Intuition based on random walks, deterministic computation

4/19



Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks
• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0



p

Intuition based on random walks, deterministic computation

4/19



Random Walk Based Node Embeddings

DeepWalk and Node2Vec
1. Sample random walks
2. Run Skip-Gram to get the embedding:

• Positive: co-occuring nodes
• Negative: other nodes

=⇒ Embedding is a random variable

Node2Vec just encodes proximity, can we use more structure?
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CRaWl



CRaWl

CNNs for Random Walks
• Sample random walks
• Construct a feature matrix for each walk
• Process features with 1D-CNNs
• Use result to update latent node embeddings
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CRaWl Layer

Input: Graph G = (V, E) with node and edge features h,g
Hyperparameters: number m and length ` of walks, window size s of the CNN
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CRaWl Layer

Step 1: Sample m random walks of length `
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CRaWl Layer

Step 2: Compute feature matrix for each walk with window size s
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CRaWl Layer

Column 1: Node features
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CRaWl Layer

Column 2: Edge features
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CRaWl Layer

Column 3: Binary identity features
(1 if current node and j-th predecessor are the same)

Within the window size
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CRaWl Layer

Column 4: Binary edge features
(1 of current node and (j+1)-th predecessor are connected)

Again within the window
We skip the first node (always 1)

7/19



CRaWl Layer

Step 2: The feature matrix fully describes induced subgraphs of size s
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CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN
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CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

Pool & Update

1D-CNN
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CRaWl Layer

Step 4: Pool the output
(Every node averages all ci where it was the center of the walk)

Pool & Update

1D-CNN
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CRaWl Network
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Every layer updates a node embedding

=⇒ Fully compatible with message passing and graph transformer layers
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Experiments & Expressiveness



Experiments

Method ZINC MOLPCBA CSL
Test MAE ↓ Test AP ↑ Test Acc ↑ (%)

GIN [Xu et al., 2019] 0.526 ± 0.051 0.2703 ± 0.0023 10.0 ± 0.0
GCN [Kipf and Welling, 2017] 0.367 ± 0.011 0.2483 ± 0.0037 10.0 ± 0.0
3WLGNN [Maron et al., 2019] 0.303 ± 0.068 - 95.7 ± 14.9
PNA [Corso et al., 2020] 0.142 ± 0.010 0.2838 ± 0.0035 10.0 ± 0.0
PHC-GNN [Le et al., 2021] 0.164 ± 0.003 0.2947 ± 0.0026 -
GSN [Bouritsas et al., 2020] 0.108 ± 0.018 - -
GINE+ [Brossard et al., 2020] - 0.2979 ± 0.0030 -
GPS [Rampášek et al., 2022] 0.070 ± 0.004 0.2907 ± 0.0028 -

CRaWl 0.085 ± 0.004 0.2986 ± 0.0025 100.0 ± 0.0
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Expressiveness

Considerations:

• Output of CRaWl is a random variable.
• CRaWl is permutation invariant. (Because random walks are, too.)
• CRaWl can (theoretically) detect any substructure with up to s nodes.

• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.
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CRaWl vs MPGNNs

MPGNNs cannot distinguish the following graphs:

Distinguished by CRaWl with s = 3 and non-backtracking walks.
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Expressiveness

Theorem (informal)
CRaWl sees things that even higher-order MPGNNs cannot.

Those graphs are standard CFI graphs.
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Expressiveness

Theorem (formal)
For every k ≥ 1 there are graphs of maximum degree 3 that are distinguishable by
CRaWl with window size and walk length O(k2), but not by k-WL (and hence not by
k-dimensional GNNs).
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CRaWl vs MPGNNs

For the other direction:

Indistinguishable to CRaWl with s = o(n).

Distinguishable with 1-WL in O(n) steps.
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(Small) Conclusion



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)

• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)

• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks

• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies

• Use transformers for processing the feature matrix

14/19



Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19



Excursion: Baseline Training



Excursion: Baseline Training

On the LRGB Dataset



Long-Range Graph Benchmark

Peptides-Func
Peptides-Struct

Superpixel
Pascal and COCO

PCQM-Contact
(link prediction)

• Focus on long-range interaction
• Young dataset (from summer 2022), rapidly adopted

But:
Baselines have weak hyperparameters→ MPGNNs can do much better!! !!
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Baseline Tuning

GatedGCN GINE GCN CRaWl
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Feature Normalization

• Input features may have
very different ranges

• Not all GNNs use internal
normalization

⇒ Feature normalization

GCN GINE GatedGCN GPS CRaWl
0.0

0.1

0.2

0.3

0.4

Te
st

 F
1

PascalVOC-SP

reported
+normalization
+tuning
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Link Prediction Metric: Filtering False Negatives

reported (raw) 
 a)

ours (raw) 
 b)

ours (filter) 
 c)

ours (ext. filter) 
 d)
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RR

PCQM-Contact
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GINE
GatedGCN
GPS

a) Implementation erroneously
uses “raw MRR”

b) After hyperparameter tuning
c) Switching to “filtered MRR”
d) Filtering self-loops

• Can never be true edges
• Emphasized by dot-product

We argue that d) is the best metric for this task
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Second Conclusion

CRaWl
• There are alternatives to standard MPGNNs (and Graph Transformers)
• Random walks are good at capturing local structure

• And long-range interactions for extended window sizes (→ LRGB)

• CRaWl layers are fully compatible with other layers (MPGNN, GT)

LRGB
• Baseline tuning is vitally important (always!)
• Message passing is much better than reported

• What does that tell us about long-range interactions or the LRGB datasets?

• Currently, the link prediction metric is broken
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Random Walks

How many walks? Which length?
• Default: m = |V|. Start one walk at each vertex.
• Training: ` = 50, Testing: ` = 100

Walk Strategies:
• uniform
• non-backtracking
• Many more: pq-Walks,. . .

Which window size s?
• Default: s = 8

Hyperparameter
Tuning
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