
How can we use random walks in deep learning on graphs?
Why do we care?

Martin Ritzert

Work done while at RWTH Aachen together with Jan Tönshoff, Hinrikus Wolf, and Martin Grohe

Introduction

Introduction: Graphs are Everywhere

Molecules Social Networks

1/19

Introduction: Graphs are Everywhere

Molecules Social Networks

This talk focuses on Graph Classification

1/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure

• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure

• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure

• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing

2/19

Graph Learning

Neural Network

Fundamental Challenges of Graph Learning:

• Process graphs of any size and structure
• Permutation Invariance

Solution: Message Passing

2/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:

• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives?

3/19

Message Passing: Extensions

Equivalent to the 1-dimensional Weisfeiler-Leman algorithm.

Many extensions have been proposed:
• Random Node IDs
[Abboud et al., 2020]

• Higher Order GNNs
[Morris et al., 2019, Maron et al., 2019]

• Add motif counts as features
[Bouritsas et al., 2020]

• Aggregate from K-Hop Neighbors
[Brossard et al., 2020]

Are there alternatives? 3/19

Random Walks for Graph Learning

Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks

• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0



p

Intuition based on random walks, deterministic computation

4/19

Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks
• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0



p

Intuition based on random walks, deterministic computation

4/19

Random Walk Graph Kernel

Random Walk Graph Kernel
• Compare graphs through common random walks
• based on the number of length p ∈ [P] random walks
• Various usecases:

• Graph kernel, e.g. with SVM
• Structural embedding, e.g. in Graph Transformers
• As GNN, e.g. RWGNN [Nikolentzos and Vazirgiannis, 2020]


0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0



p

Intuition based on random walks, deterministic computation

4/19

Random Walk Based Node Embeddings

DeepWalk and Node2Vec
1. Sample random walks
2. Run Skip-Gram to get the embedding:

• Positive: co-occuring nodes
• Negative: other nodes

=⇒ Embedding is a random variable

Node2Vec just encodes proximity, can we use more structure?

5/19

Random Walk Based Node Embeddings

DeepWalk and Node2Vec
1. Sample random walks
2. Run Skip-Gram to get the embedding:

• Positive: co-occuring nodes
• Negative: other nodes

=⇒ Embedding is a random variable

Node2Vec just encodes proximity, can we use more structure?

5/19

CRaWl

CRaWl

CNNs for Random Walks
• Sample random walks
• Construct a feature matrix for each walk
• Process features with 1D-CNNs
• Use result to update latent node embeddings

6/19

CRaWl

CNNs for Random Walks

• Sample random walks
• Construct a feature matrix for each walk
• Process features with 1D-CNNs
• Use result to update latent node embeddings

6/19

CRaWl

CNNs for Random Walks
• Sample random walks

• Construct a feature matrix for each walk
• Process features with 1D-CNNs
• Use result to update latent node embeddings

6/19

CRaWl

CNNs for Random Walks
• Sample random walks
• Construct a feature matrix for each walk

• Process features with 1D-CNNs
• Use result to update latent node embeddings

6/19

CRaWl

CNNs for Random Walks
• Sample random walks
• Construct a feature matrix for each walk
• Process features with 1D-CNNs

• Use result to update latent node embeddings

6/19

CRaWl

CNNs for Random Walks
• Sample random walks
• Construct a feature matrix for each walk
• Process features with 1D-CNNs
• Use result to update latent node embeddings

6/19

CRaWl Layer

Input: Graph G = (V, E) with node and edge features h,g
Hyperparameters: number m and length ` of walks, window size s of the CNN

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 1: Sample m random walks of length `

7/19

CRaWl Layer

Step 2: Compute feature matrix for each walk with window size s

7/19

CRaWl Layer

Step 2: Compute feature matrix for each walk with window size s

7/19

CRaWl Layer

Column 1: Node features

7/19

CRaWl Layer

Column 2: Edge features

7/19

CRaWl Layer

Column 3: Binary identity features
(1 if current node and j-th predecessor are the same)

Within the window size

7/19

CRaWl Layer

Column 4: Binary edge features
(1 of current node and (j+1)-th predecessor are connected)

Again within the window
We skip the first node (always 1)

7/19

CRaWl Layer

Step 2: The feature matrix fully describes induced subgraphs of size s

7/19

CRaWl Layer

Step 2: The feature matrix fully describes induced subgraphs of size s

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

1D-CNN

7/19

CRaWl Layer

Step 3: Process induced subgraphs with a 1D CNN

Pool & Update

1D-CNN

7/19

CRaWl Layer

Step 4: Pool the output
(Every node averages all ci where it was the center of the walk)

Pool & Update

1D-CNN

7/19

CRaWl Layer

Step 4: Pool the output
(Every node averages all ci where it was the center of the walk)

Pool & Update

1D-CNN

7/19

CRaWl Layer

Step 4: Pool the output
(Every node averages all ci where it was the center of the walk)

Pool & Update

1D-CNN

7/19

CRaWl Network

CRaWl
Layer

CRaWl
Layer

Global
Pool MLPCRaWl

Layer

Every layer updates a node embedding

=⇒ Fully compatible with message passing and graph transformer layers

8/19

CRaWl Network

CRaWl
Layer

CRaWl
Layer

Global
Pool MLPCRaWl

Layer

Random Walks

Every layer updates a node embedding

=⇒ Fully compatible with message passing and graph transformer layers

8/19

CRaWl Network

CRaWl
Layer

CRaWl
Layer

Global
Pool MLPCRaWl

Layer

Random Walks

Every layer updates a node embedding

=⇒ Fully compatible with message passing and graph transformer layers

8/19

Experiments & Expressiveness

Experiments

Method ZINC MOLPCBA CSL
Test MAE ↓ Test AP ↑ Test Acc ↑ (%)

GIN [Xu et al., 2019] 0.526 ± 0.051 0.2703 ± 0.0023 10.0 ± 0.0
GCN [Kipf and Welling, 2017] 0.367 ± 0.011 0.2483 ± 0.0037 10.0 ± 0.0
3WLGNN [Maron et al., 2019] 0.303 ± 0.068 - 95.7 ± 14.9
PNA [Corso et al., 2020] 0.142 ± 0.010 0.2838 ± 0.0035 10.0 ± 0.0
PHC-GNN [Le et al., 2021] 0.164 ± 0.003 0.2947 ± 0.0026 -
GSN [Bouritsas et al., 2020] 0.108 ± 0.018 - -
GINE+ [Brossard et al., 2020] - 0.2979 ± 0.0030 -
GPS [Rampášek et al., 2022] 0.070 ± 0.004 0.2907 ± 0.0028 -

CRaWl 0.085 ± 0.004 0.2986 ± 0.0025 100.0 ± 0.0

9/19

Expressiveness

Considerations:

• Output of CRaWl is a random variable.
• CRaWl is permutation invariant. (Because random walks are, too.)
• CRaWl can (theoretically) detect any substructure with up to s nodes.

• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.

10/19

Expressiveness

Considerations:
• Output of CRaWl is a random variable.

• CRaWl is permutation invariant. (Because random walks are, too.)
• CRaWl can (theoretically) detect any substructure with up to s nodes.

• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.

10/19

Expressiveness

Considerations:
• Output of CRaWl is a random variable.
• CRaWl is permutation invariant. (Because random walks are, too.)

• CRaWl can (theoretically) detect any substructure with up to s nodes.
• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.

10/19

Expressiveness

Considerations:
• Output of CRaWl is a random variable.
• CRaWl is permutation invariant. (Because random walks are, too.)
• CRaWl can (theoretically) detect any substructure with up to s nodes.

• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.

10/19

Expressiveness

Considerations:
• Output of CRaWl is a random variable.
• CRaWl is permutation invariant. (Because random walks are, too.)
• CRaWl can (theoretically) detect any substructure with up to s nodes.

• Caveat: The feature matrix is not permutation invariant =⇒ the CNN has to cope

• Substructures need to be traversed to be detected.

10/19

CRaWl vs MPGNNs

MPGNNs cannot distinguish the following graphs:

Distinguished by CRaWl with s = 3 and non-backtracking walks.

11/19

CRaWl vs MPGNNs

MPGNNs cannot distinguish the following graphs:

Distinguished by CRaWl with s = 3 and non-backtracking walks.

11/19

Expressiveness

Theorem (informal)
CRaWl sees things that even higher-order MPGNNs cannot.

Those graphs are standard CFI graphs.

12/19

Expressiveness

Theorem (formal)
For every k ≥ 1 there are graphs of maximum degree 3 that are distinguishable by
CRaWl with window size and walk length O(k2), but not by k-WL (and hence not by
k-dimensional GNNs).

Those graphs are standard CFI graphs.

12/19

Expressiveness

Theorem (formal)
For every k ≥ 1 there are graphs of maximum degree 3 that are distinguishable by
CRaWl with window size and walk length O(k2), but not by k-WL (and hence not by
k-dimensional GNNs).

Those graphs are standard CFI graphs.

12/19

CRaWl vs MPGNNs

For the other direction:

Indistinguishable to CRaWl with s = o(n).

Distinguishable with 1-WL in O(n) steps.

13/19

CRaWl vs MPGNNs

For the other direction:

Indistinguishable to CRaWl with s = o(n).

Distinguishable with 1-WL in O(n) steps.

13/19

CRaWl vs MPGNNs

For the other direction:

Indistinguishable to CRaWl with s = o(n).

Distinguishable with 1-WL in O(n) steps.

13/19

(Small) Conclusion

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)

• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)

• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks

• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies

• Use transformers for processing the feature matrix

14/19

Conclusion

CRaWl:

• Distinguishes local structures (it can detect triangles!)
• Strong empirical performance (especially MOLPCBA)
• Expressiveness perpendicular to WL-hierarchy

Future Work:

• Node- & edge-level tasks
• Random walk strategies
• Use transformers for processing the feature matrix

14/19

Excursion: Baseline Training

Excursion: Baseline Training

On the LRGB Dataset

Long-Range Graph Benchmark

Peptides-Func
Peptides-Struct

Superpixel
Pascal and COCO

PCQM-Contact
(link prediction)

• Focus on long-range interaction
• Young dataset (from summer 2022), rapidly adopted

But:
Baselines have weak hyperparameters→ MPGNNs can do much better!! !!

15/19

Long-Range Graph Benchmark

Peptides-Func
Peptides-Struct

Superpixel
Pascal and COCO

PCQM-Contact
(link prediction)

• Focus on long-range interaction
• Young dataset (from summer 2022), rapidly adopted

But:
Baselines have weak hyperparameters→ MPGNNs can do much better!! !!

15/19

Long-Range Graph Benchmark

Peptides-Func
Peptides-Struct

Superpixel
Pascal and COCO

PCQM-Contact
(link prediction)

• Focus on long-range interaction
• Young dataset (from summer 2022), rapidly adopted

But:
Baselines have weak hyperparameters→ MPGNNs can do much better!! !!

15/19

Baseline Tuning

GatedGCN GINE GCN CRaWl
Peptides-Struct

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
ea

n
Av

er
ag

e
Er

ro
r (

M
AE

)

GatedGCN GINE GCN CRaWl
Peptides-Func

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

Pr
ec

isi
on

 (A
P)

1-layer head 2-layer head fully tuned GPS baseline

16/19

Feature Normalization

• Input features may have
very different ranges

• Not all GNNs use internal
normalization

⇒ Feature normalization

GCN GINE GatedGCN GPS CRaWl
0.0

0.1

0.2

0.3

0.4

Te
st

 F
1

PascalVOC-SP

reported
+normalization
+tuning

17/19

Link Prediction Metric: Filtering False Negatives

reported (raw)
 a)

ours (raw)
 b)

ours (filter)
 c)

ours (ext. filter)
 d)

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 M
RR

PCQM-Contact
GCN
GINE
GatedGCN
GPS

a) Implementation erroneously
uses “raw MRR”

b) After hyperparameter tuning
c) Switching to “filtered MRR”
d) Filtering self-loops

• Can never be true edges
• Emphasized by dot-product

We argue that d) is the best metric for this task

18/19

Link Prediction Metric: Filtering False Negatives

reported (raw)
 a)

ours (raw)
 b)

ours (filter)
 c)

ours (ext. filter)
 d)

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 M
RR

PCQM-Contact
GCN
GINE
GatedGCN
GPS

a) Implementation erroneously
uses “raw MRR”

b) After hyperparameter tuning
c) Switching to “filtered MRR”
d) Filtering self-loops

• Can never be true edges
• Emphasized by dot-product

We argue that d) is the best metric for this task

18/19

Second Conclusion

CRaWl
• There are alternatives to standard MPGNNs (and Graph Transformers)
• Random walks are good at capturing local structure

• And long-range interactions for extended window sizes (→ LRGB)

• CRaWl layers are fully compatible with other layers (MPGNN, GT)

LRGB
• Baseline tuning is vitally important (always!)
• Message passing is much better than reported

• What does that tell us about long-range interactions or the LRGB datasets?

• Currently, the link prediction metric is broken

19/19

Second Conclusion

CRaWl
• There are alternatives to standard MPGNNs (and Graph Transformers)
• Random walks are good at capturing local structure

• And long-range interactions for extended window sizes (→ LRGB)

• CRaWl layers are fully compatible with other layers (MPGNN, GT)

LRGB
• Baseline tuning is vitally important (always!)
• Message passing is much better than reported

• What does that tell us about long-range interactions or the LRGB datasets?

• Currently, the link prediction metric is broken

19/19

References

References

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power of graph neural networks with random node
initialization. arXiv preprint arXiv:2010.01179, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural:
Higher-order graph neural networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pages 4602–4609, 2019.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. pages 2153–2164, 2019.
Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural network expressivity via subgraph isomorphism

counting. arXiv preprint arXiv:2006.09252, 2020.
Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model local structure. arXiv preprint arXiv:2011.15069, 2020.
Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. Advances in Neural Information Processing Systems, 33:16211–16222,

2020.
Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In Proceedings of the Seventh International

Conference on Learning Representations (ICLR), 2019.
Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning

Representations (ICLR), 2017.
Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood aggregation for graph nets. arXiv preprint

arXiv:2004.05718, 2020.
Tuan Le, Marco Bertolini, Frank Noé, and Djork-Arné Clevert. Parameterized hypercomplex graph neural networks for graph classification. arXiv preprint

arXiv:2103.16584, 2021.
Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scalable graph

transformer. Advances in Neural Information Processing Systems, 35:14501–14515, 2022.

19/19

Random Walks

How many walks? Which length?
• Default: m = |V|. Start one walk at each vertex.
• Training: ` = 50, Testing: ` = 100

Walk Strategies:
• uniform
• non-backtracking
• Many more: pq-Walks,. . .

Which window size s?
• Default: s = 8

Hyperparameter
Tuning

19/19

	Introduction
	Random Walks for Graph Learning
	CRaWl
	Experiments & Expressiveness
	(Small) Conclusion
	Excursion: Baseline Training
	On the LRGB Dataset

	References

