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• 2022-2024 : Postdoc at Institut Montefiore in a project for RTE R&D

2

Balthazar DONON



• Talk is about our latest work !


• But it does not include experimental results for now…


• Topology-Aware Reinforcement Learning for Tertiary Voltage Control, 
submitted to PSCC 2024 (power systems conference).


• Gives an idea of how GNNs can be applied for a real-life power systems 
problem.

3



4

Efthymios

Karangelos


Postdoc - ULiège

Laure

Crochepierre

Researcher - RTE

Balthazar

Donon


Postdoc - ULiège

François

Cubelier


PhD student - ULiège

Louis

Wehenkel


Professor - ULiège

• Collaboration between RTE R&D and Institut Montefiore (Liège Université).



Background & Motivations
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Background & Motivations
High Voltage Issues

• Increase in the frequency and intensity of high voltage events:


• Can damage assets,


• Caused by increase of renewables, new electricity uses, etc.


• Operators do not have time for that.
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Background & Motivations
Long Term Goal

• We want a decision support tool to assist operators.


• Input : Operating condition ,


• Output : Voltage setpoints .


• The tool will not take control of the grid : it can only suggest an action (open-
loop control).


• The tool cannot rely on expensive intermediate simulations.

x

y
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Background & Motivations
Traditional Optimization

• Tertiary Voltage control can be cast as an Optimal Power Flow [2].


• Mixed Integer Non Linear Problem.


• Current resolution methods do not scale to real-life power systems.
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Background & Motivations
Deep Learning

• Why not Deep Learning ?


• Tremendous successes in various domains.


• Solves complex problems that require a very high level of abstraction [3] [4] 
[5].
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Initial Optimization problem
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Initial Optimization Problem
Variables

• Let  be an operating condition (i.e. a snapshot at certain instant).


• Encompasses both its structure and its numerical features.


• Let  be a tertiary voltage control decision.


• Size depends on the number and nature of assets in .

x ∈ 𝒳

y ∈ 𝒴(x)

x
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Initial Optimization Problem
Problem

• We look for a tertiary voltage control decision that minimizes a real-valued 
cost function ,


.


• Tertiary voltage control includes both continuous and discrete variables.


• As a first step, we only consider generators voltage setpoints (continuous).

c

y*(x) = arg min
y∈𝒴(x)

c(x, y)
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Initial Optimization Problem
Cost function

• As a proxy of what operators do, we consider 


.


•  penalizes power losses caused by Joule’s effect.


•  penalizes voltage violations.


•  penalizes overflows.


• Computing  requires to run a black-box simulation.

c(x, y) = cJ(x, y) + cV(x, y) + cI(x, y)

cJ

cv

cI

c
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Reinforcement Learning Problem

14



RL Problem
Distribution of Problem Instances

• We wish to solve the problem for a whole distribution  of operating 
conditions .


• Given a certain , we have to return a  in one step.


• Contextual Bandit, typically addressed in Reinforcement Learning [6].

p
x

x y
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RL Problem
Conversion to an RL Problem

We consider a probabilistic control policy  , such that 


.


 can be viewed as a state,  as an action, and  as the opposite of a reward.

Πθ

θ* = arg min
θ∈Θ

𝔼 x ∼ p( ⋅ )
y ∼ Πθ( ⋅ |x)

[c(x, y)]

x y c
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RL Problem
Policy Model

Control variables being continuous, we consider


,


where  is fixed,  is the identity matrix, and  is a neural network.

Πθ( ⋅ |x) = 𝒩( fθ(x), σ211)

σ > 0 11 fθ
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Hyper Heterogeneous  
Multi Graphs (H2MGs)
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H2MGs
Operating Conditions Distribution
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H2MGs
Operating Conditions Distribution
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H2MGs
Operating Conditions Distribution
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H2MGs
Operating Conditions Distribution
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H2MGs
Data Representation
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H2MGs
Data Representation
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H2MGs
Data Representation
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Information loss !



H2MGs
Data Representation
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H2MGs
Need for a Better Representation

• Actual power grids are :


• Hyper graphs : Composed of hyper-edges of various orders,


• Heterogeneous Graphs : Multiple classes of hyper-edges,


• Multi Graphs : Multiple hyper-edges of the same class can be collocated.
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H2MGs
Graphical Structure

• Assets are referred to as hyper-edges.


• We denote by  the set of all classes of hyper-
edges.


• For all class , we denote by  the set of hyper-edges of class .


• Example :  is the set of transmission lines available in .

𝒞 = {bus, gen, load, line, …}

c ∈ 𝒞 ℰc
x c

ℰline
x x
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H2MGs
Graphical Structure

• Hyper-edges in  are interconnected through a set of addresses .


• Addresses serve as interface between hyper-edges, and do not bear any 
numerical features.


• All hyper-edges of the same class  are connected to the same amount of 
addresses, through their ports .


• A port  is a mapping from an hyper-edge to an address.

x Ax

c
𝒪c

o ∈ 𝒪c : ℰc
x → Ax
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H2MGs
Graphical Structure

• Let  be an address. 


• We define its neighborhood by :


.

a ∈ Ax

Nx(a) = {(c, e, o) |c ∈ 𝒞, e ∈ ℰc
x, o ∈ 𝒪c, o(e) = a}
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H2MGs
Feature Vectors

• All hyper-edges of the same class bear feature vectors of the same size,


.x = (xc
e)c∈𝒞,e∈ℰc

x
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Neural Network Architecture
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Neural Network Architecture
Overview

• Our policy  requires a trainable function  to compute the mean of a 
Gaussian distribution.


•  should take an operating condition  as input, and return a series of voltage 
setpoint values for each available generator.

Πθ fθ

fθ x
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Neural Network Architecture
Encoding

At first, we encode feature vectors of all hyper-edges.


∀c ∈ 𝒞, ∀e ∈ ℰc
x, x̃c

e = Ξc
θ(x

c
e)

34

B. Donon, “Deep statistical solvers & power systems applications,” 



Neural Network Architecture
Interaction

Then, we associate all addresses with latent coordinates , which we 
initialize at the origin.


(ha)a∈Ax

∀a ∈ Ax, ha(τ = 0) = [0,…,0]
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Neural Network Architecture
Interaction

• Addresses then evolves in this latent space between  and  according 
to the following dynamical system (Neural Ordinary Differential Equation) :


.

τ = 0 1

∀a ∈ Ax,
dha

dτ
= tanh ∑

(c,e,o)∈Nx(a)

Φc,o
θ (x̃c

e, he(τ), τ)
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Neural Network Architecture
Decoding

• Finally, we use the resulting latent state to produce a prediction for all hyper-
edges that require one :


.∀c ∈ 𝒞, ∀e ∈ ℰc
x, μc

e = Ψc
θ(x̃

c
e, he(1))
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Neural Network Architecture
Overall System

• Here is the whole process,


∀(c, e), x̃c
e = Ξc

θ(x
c
e),

∀a, ha(0) = [0,…,0],

∀a,
dha

dτ
= tanh ∑

(c,e,o)∈Nx(a)

Φc,o
θ (x̃c

e, he(τ), τ)

∀(c, e), μc
e = Ψc

θ(x̃
c
e, he(1))
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Neural Network Architecture
Pipeline
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Policy Training

45



Policy Training
Algorithm

• Because of the absence of sequentiality, we have chosen a basic RL method 
called REINFORCE.


• For a certain , we have


.


• For a given , we draw multiple actions  to obtain an empirical 
estimation of the right term.

x

∇θ𝔼y∼Πθ(⋅|x) [c(x, y)] = 𝔼y∼Πθ(⋅|x) [c(x, y)∇θlog Πθ(y |x)]
x y ∼ Πθ( ⋅ |x)
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Experiments
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Experiments
Missing Data

• Artificial data for now.


• Results have not been published for now, but basically it works quite well !


• It works on datasets with varying number of generators, lines, transformers, 
etc.


• Compatible with real-life data !
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Future Work
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Future Work
Main directions

• Improve sample efficiency of our training pipeline.


• Implement on real-life data.


• Consider discrete variables.


• Address other Power Systems issues.
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Thank you !
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