Graph Neural Networks for Power Systems Operation

Balthazar DONON - 06/09/2023

Balthazar DONON

Deep Statistical Solvers & Power Systems Applications

2018 - 2022 : PhD student @ RTE R&D and Université Paris-Saclay

Graph Neural Networks for Tertiary Voltage Control

2022-2024 : Postdoc at Institut Montefiore in a project for RTE R&D

- Talk is about our latest work !
- But it does not include experimental results for now...
- Topology-Aware Reinforcement Learning for Tertiary Voltage Control, submitted to PSCC 2024 (power systems conference).
- problem.

Gives an idea of how GNNs can be applied for a real-life power systems

Collaboration between RTE R&D and Institut Montefiore (Liège Université).

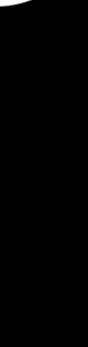
Louis Wehenkel Professor - ULiège

François Cubelier PhD student - ULiège

Efthymios Karangelos Postdoc - ULiège

Laure Crochepierre Researcher - RTE

Balthazar Donon Postdoc - ULiège



Background & Motivations

Background & Motivations High Voltage Issues

- Increase in the frequency and intensity of high voltage events:
 - Can damage assets,
 - Caused by increase of renewables, new electricity uses, etc.
- Operators do not have time for that.

[1] P.Mandoulidis, V.Lampropoulos, C.Vournas, M.Karystianos, G.Christoforidis, A. Neris, and Y. Kabouris, "Controlling long-term overvoltages in lightly loaded transmission systems," 2022.

Background & Motivations Long Term Goal

- We want a decision support tool to assist operators.
 - Input : Operating condition x,
 - Output : Voltage setpoints y.
- loop control).
- The tool cannot rely on expensive intermediate simulations.

The tool will not take control of the grid : it can only suggest an action (open-

Background & Motivations Traditional Optimization

- Tertiary Voltage control can be cast as an Optimal Power Flow [2].
 - Mixed Integer Non Linear Problem.

[2] A. Castillo, "Essays on the ACOPF Problem: Formulations, Approximations, and Applications in the Electricity Markets »

Current resolution methods do not scale to real-life power systems.

Background & Motivations Deep Learning

- Why not Deep Learning?
 - Tremendous successes in various domains.
 - [5].

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going Deeper with Convolutions," [4] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning with Neural Networks," [5] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele- man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, "Mastering the game of Go with deep neural networks and tree search,"

Solves complex problems that require a very high level of abstraction [3] [4]

Initial Optimization problem

Initial Optimization Problem Variables

- Let $x \in \mathcal{X}$ be an operating condition (i.e. a snapshot at certain instant). Encompasses both its structure and its numerical features.

- Let $y \in \mathscr{Y}(x)$ be a tertiary voltage control decision.
 - Size depends on the number and nature of assets in x.

Initial Optimization Problem Problem

cost function *c*,

- Tertiary voltage control includes both continuous and discrete variables.

We look for a tertiary voltage control decision that minimizes a real-valued

 $y^*(x) = \arg\min c(x, y).$ $y \in \mathscr{Y}(x)$

• As a first step, we only consider generators voltage setpoints (continuous).

Initial Optimization Problem Cost function

As a proxy of what operators do, we consider

$$c(x, y) = c_J(x, y)$$

- *c*₁ penalizes power losses caused by Joule's effect.
- C_{v} , penalizes voltage violations.
- *c_I* penalizes overflows.
- Computing c requires to run a black-box simulation.

 $(y) + c_V(x, y) + c_I(x, y).$

Reinforcement Learning Problem

RL Problem Distribution of Problem Instances

- We wish to solve the problem for a whole distribution p of operating conditions x.
- Given a certain x, we have to return a y in one step.

[6] R. S. Sutton and A. G. Barto, *Reinforcement learning: an introduction*.

Contextual Bandit, typically addressed in Reinforcement Learning [6].

RL Problem Conversion to an RL Problem

We consider a probabilistic control policy Π_{A} , such that

x can be viewed as a state, y as an action, and c as the opposite of a reward.

$\theta^* = \arg\min \mathbb{E}_x \sim p(\cdot) \quad C(x, y)$. $\theta \in \Theta$ $y \sim \Pi_{\theta}(\cdot | x)$

RL Problem Policy Model

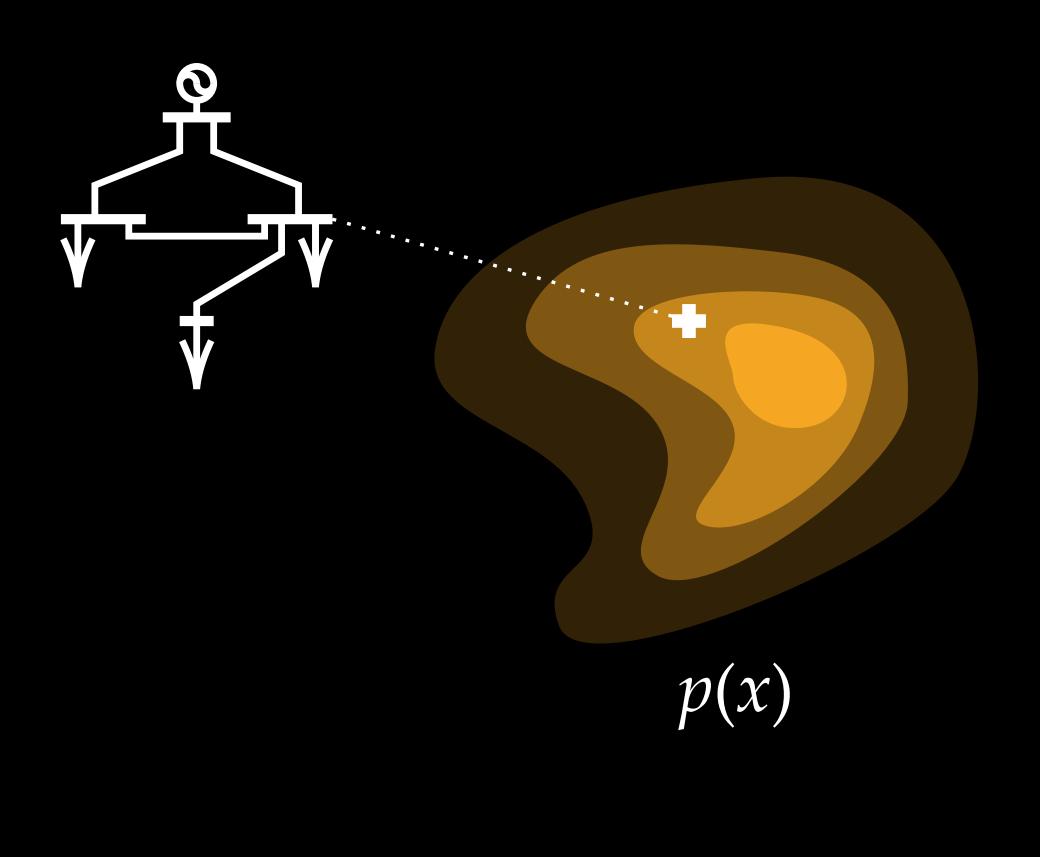
Control variables being continuous, we consider

where $\sigma > 0$ is fixed, 1 is the identity matrix, and f_{θ} is a neural network.

- $\Pi_{\theta}(\cdot | x) = \mathcal{N}(f_{\theta}(x), \sigma^2 \mathbb{1}),$

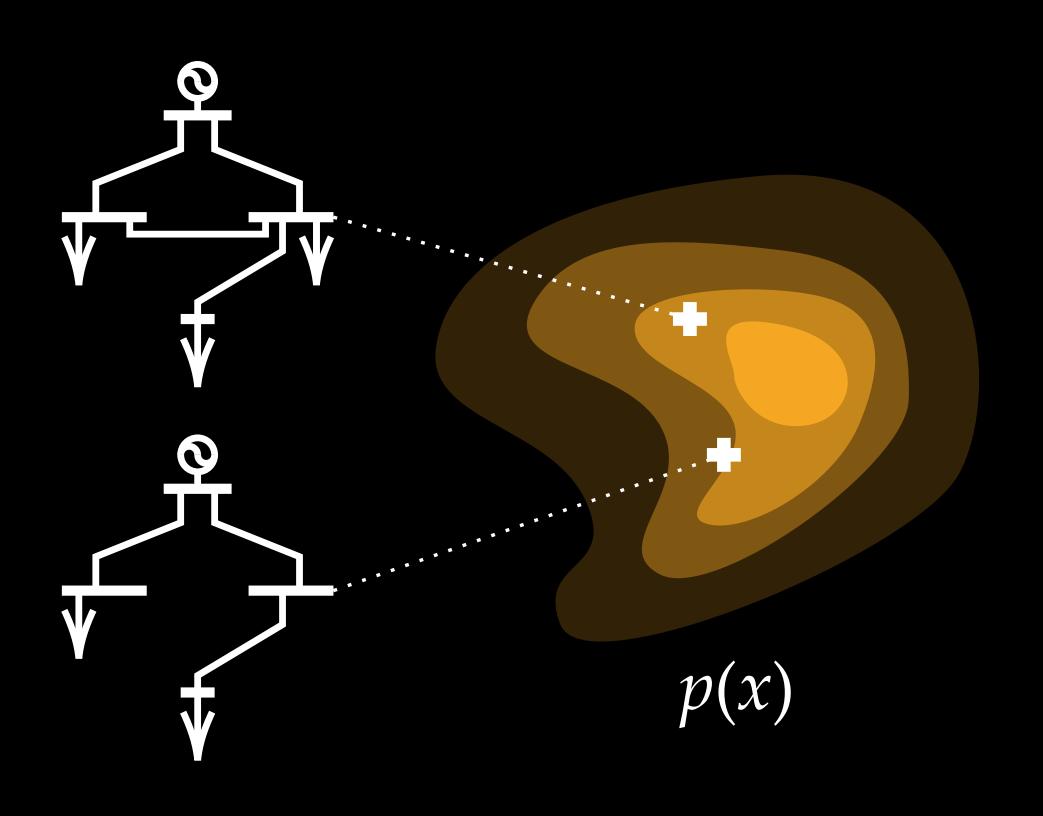
Hyper Heterogeneous Multi Graphs (H2MGs)

H2MGs **Operating Conditions Distribution**



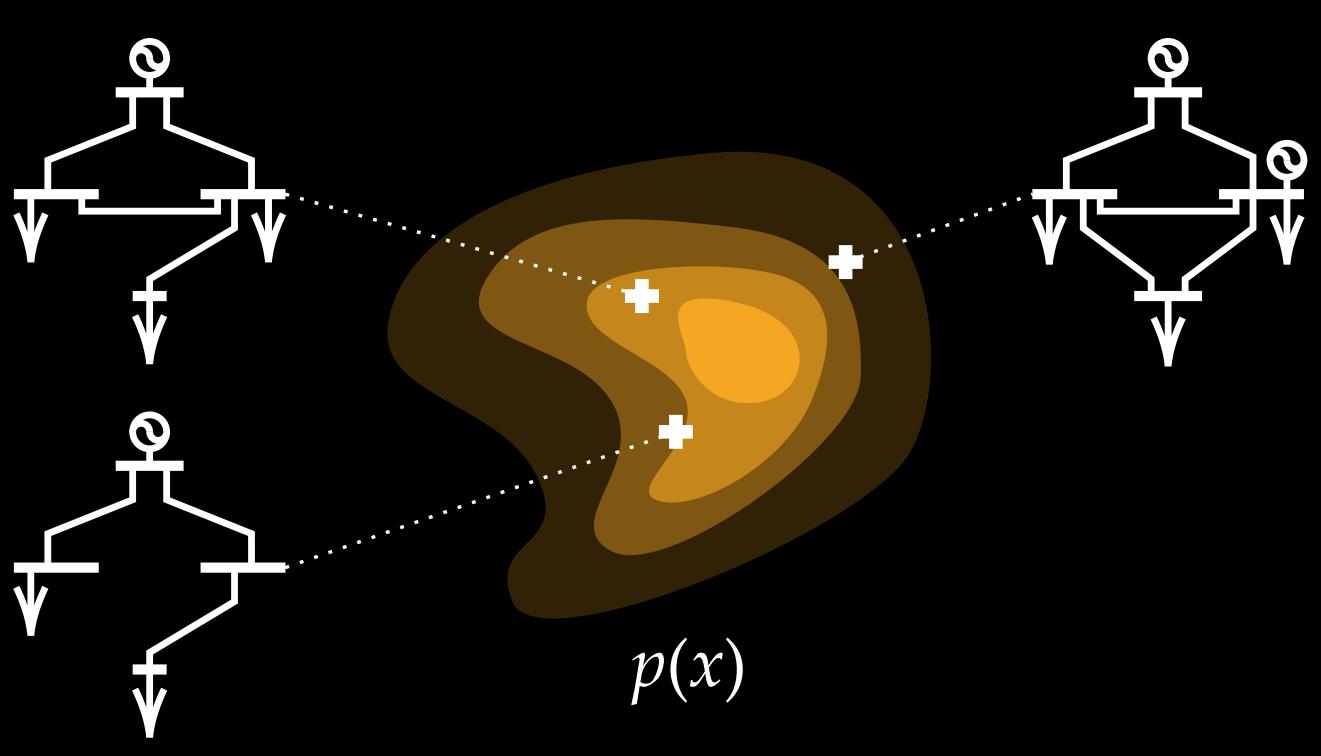
19

H2MGs **Operating Conditions Distribution**

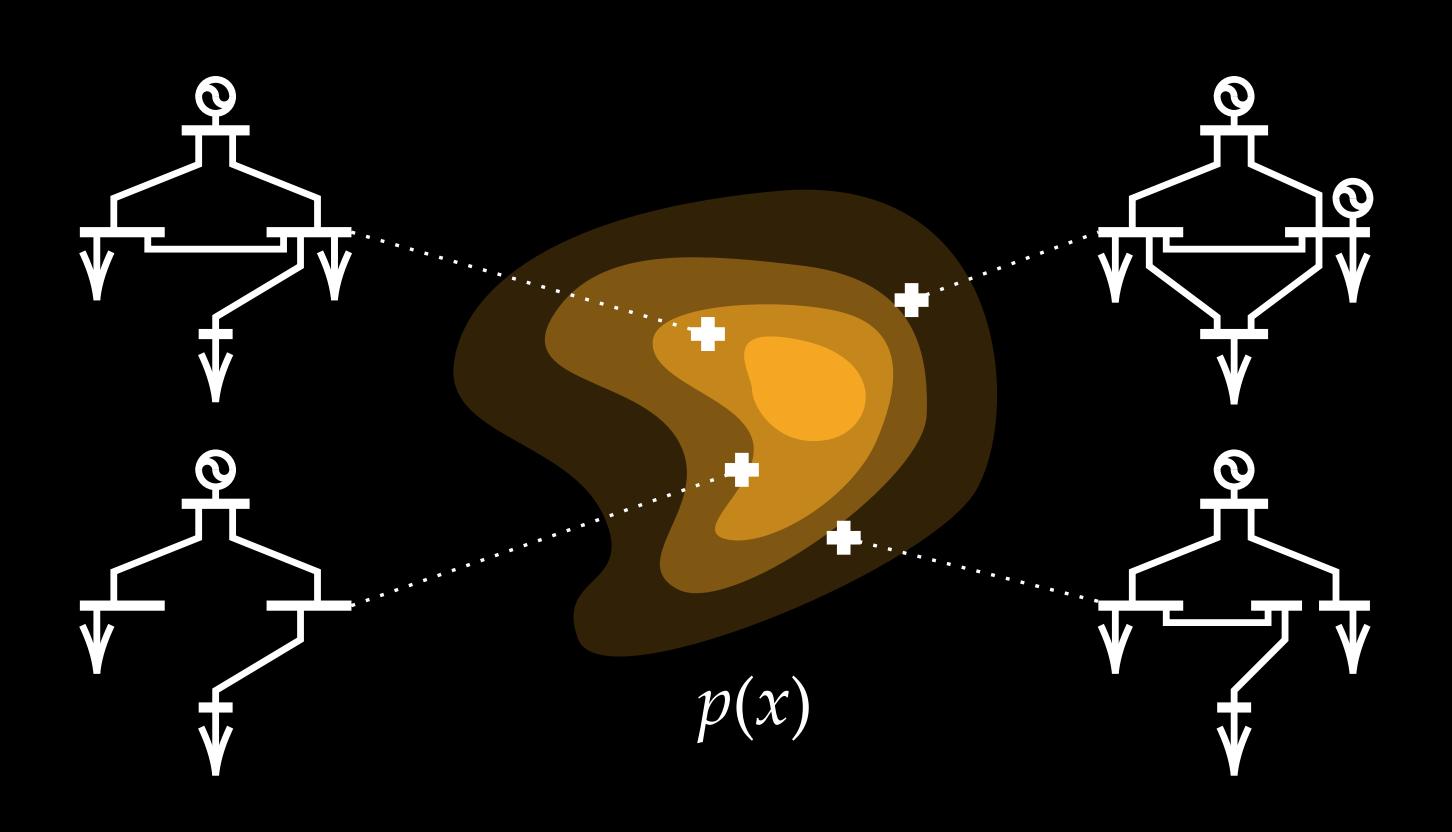


20

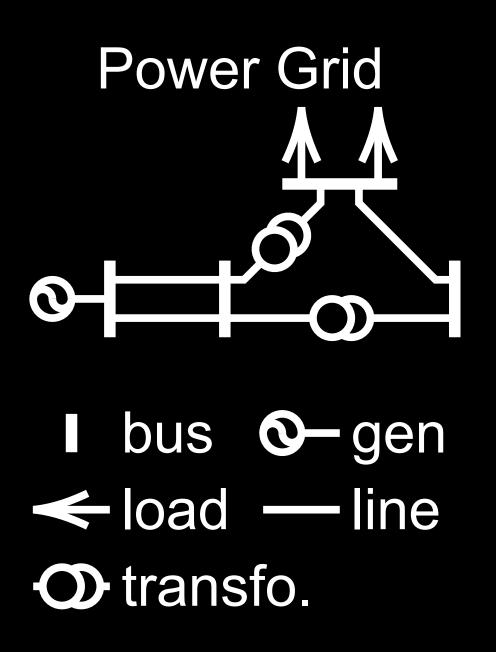
H2MGs **Operating Conditions Distribution**



H2MGS Operating Conditions Distribution



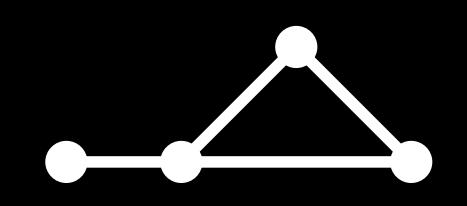
H2NGS Data Representation



H2MGs **Data Representation**



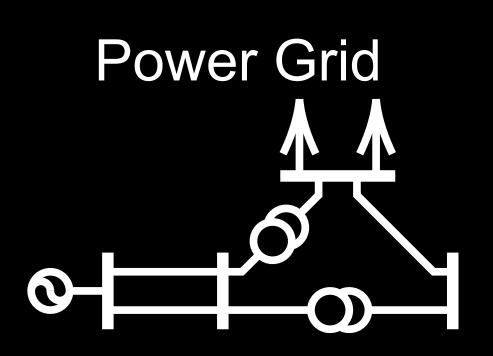
bus O-gen ←load —line **O** transfo.



node -edge

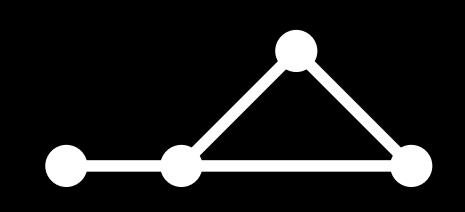
24

H2MGs **Data Representation**



bus O-gen ←load —line **O** transfo.

Standard Graph



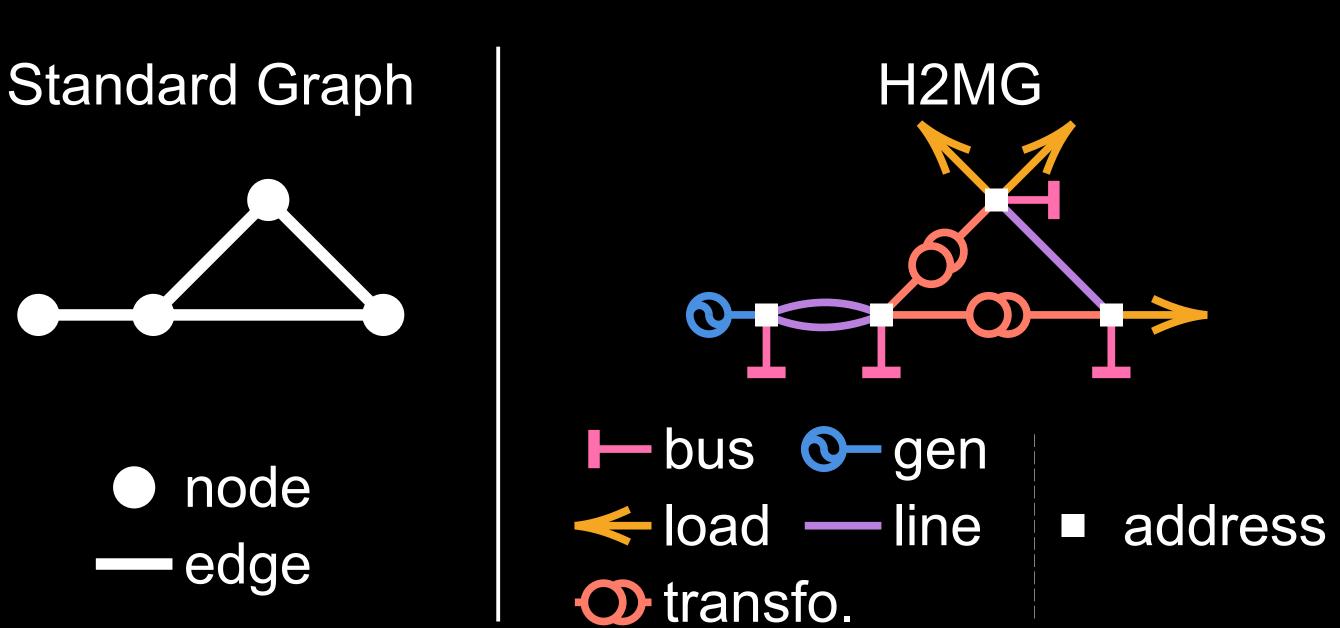
node -edge

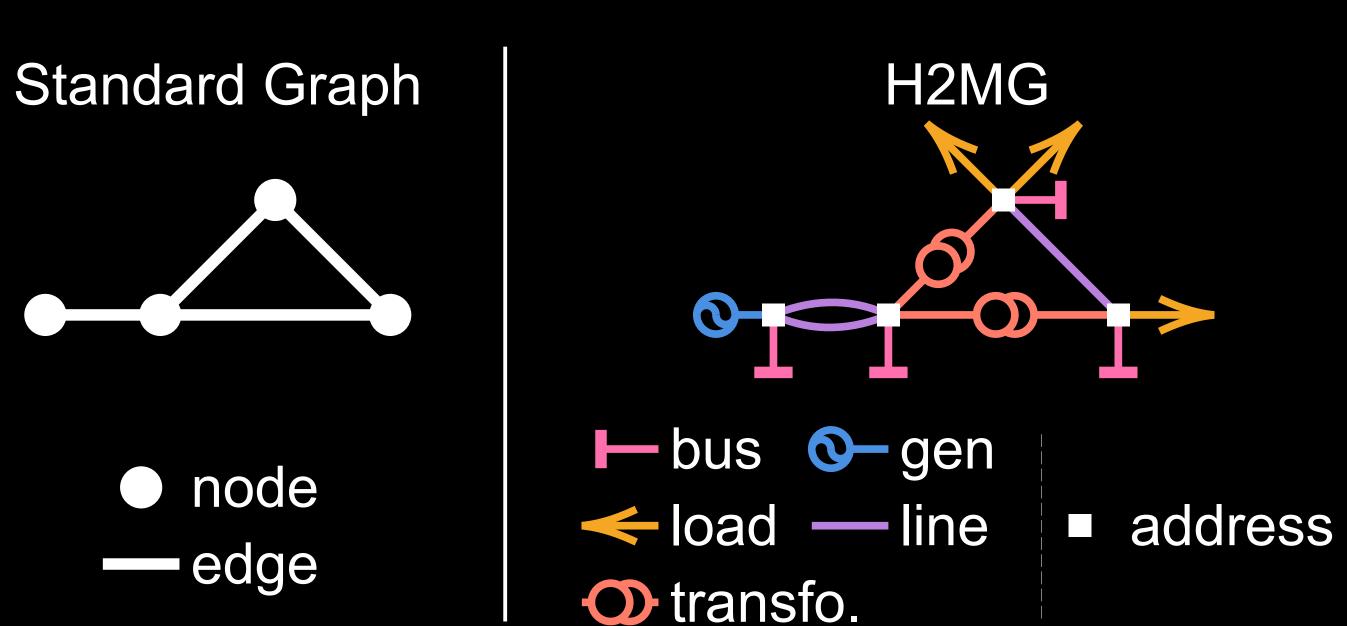
Information loss !

H2MGs **Data Representation**



bus O-gen ←load —line **O** transfo.





H2MGS Need for a Better Representation

- Actual power grids are :
 - Hyper graphs : Composed of hyper-edges of various orders,
 - Heterogeneous Graphs : Multiple classes of hyper-edges,
 - Multi Graphs : Multiple hyper-edges of the same class can be collocated.

B. Donon, "Deep statistical solvers & power systems applications,"

H2MGs **Graphical Structure**

- Assets are referred to as hyper-edges.
- edges.
- For all class $c \in \mathscr{C}$, we denote by \mathscr{C}_x^c the set of hyper-edges of class c.
 - Example : \mathscr{E}_x^{line} is the set of transmission lines available in x.

B. Donon, "Deep statistical solvers & power systems applications,"

• We denote by $\mathscr{C} = \{$ bus, gen, load, line, ... $\}$ the set of all classes of hyper-

H2MGs **Graphical Structure**

- Hyper-edges in x are interconnected through a set of addresses A_{r} .
- Addresses serve as interface between hyper-edges, and do not bear any numerical features.
- All hyper-edges of the same class c are connected to the same amount of addresses, through their ports \mathcal{O}^{c} .
 - A port $o \in \mathcal{O}^c$: $\mathscr{C}_x^c \to A_x$ is a mapping from an hyper-edge to an address.

B. Donon, "Deep statistical solvers & power systems applications,"

H2MGs **Graphical Structure**

- Let $a \in A_x$ be an address.
- We define its neighborhood by :

B. Donon, "Deep statistical solvers & power systems applications,"

$N_x(a) = \{(c, e, o) \mid c \in \mathscr{C}, e \in \mathscr{C}_x, o \in \mathscr{O}^c, o(e) = a\}.$

H2MGs **Feature Vectors**

• All hyper-edges of the same class bear feature vectors of the same size,

B. Donon, "Deep statistical solvers & power systems applications,"

Neural Network Architecture

Neural Network Architecture Overview

- Our policy Π_{θ} requires a trainable function f_{θ} to compute the mean of a Gaussian distribution.
- setpoint values for each available generator.

B. Donon, "Deep statistical solvers & power systems applications,"

• f_{θ} should take an operating condition x as input, and return a series of voltage

Neural Network Architecture Encoding

At first, we encode feature vectors of all hyper-edges. $\forall c \in \mathscr{C}, \forall e \in \mathscr{E}_x^c, \qquad \tilde{x}_e^c = \Xi_\theta^c(x_e^c)$

B. Donon, "Deep statistical solvers & power systems applications,"

Neural Network Architecture Interaction

initialize at the origin.

B. Donon, "Deep statistical solvers & power systems applications,"

Then, we associate all addresses with latent coordinates $(h_a)_{a \in A_x}$, which we

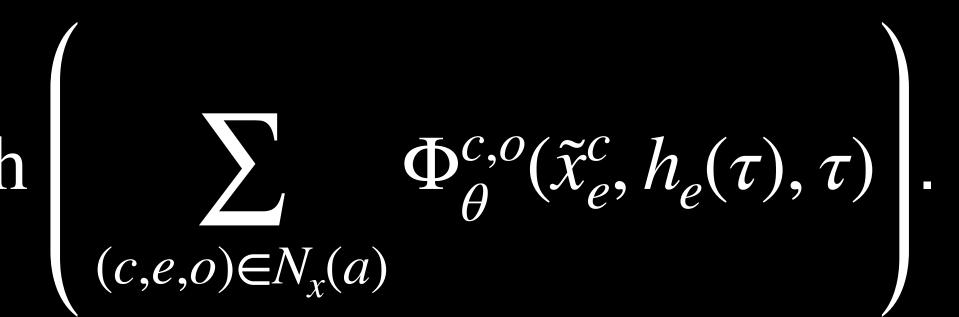
$\forall a \in A_x, \quad h_a(\tau = 0) = [0, ..., 0]$

Neural Network Architecture Interaction

$$\forall a \in A_x, \qquad \frac{dh_a}{d\tau} = \tan^2 d\tau$$

B. Donon, "Deep statistical solvers & power systems applications,"

• Addresses then evolves in this latent space between $\tau = 0$ and 1 according to the following dynamical system (Neural Ordinary Differential Equation):



Neural Network Architecture Decoding

edges that require one :

B. Donon, "Deep statistical solvers & power systems applications,"

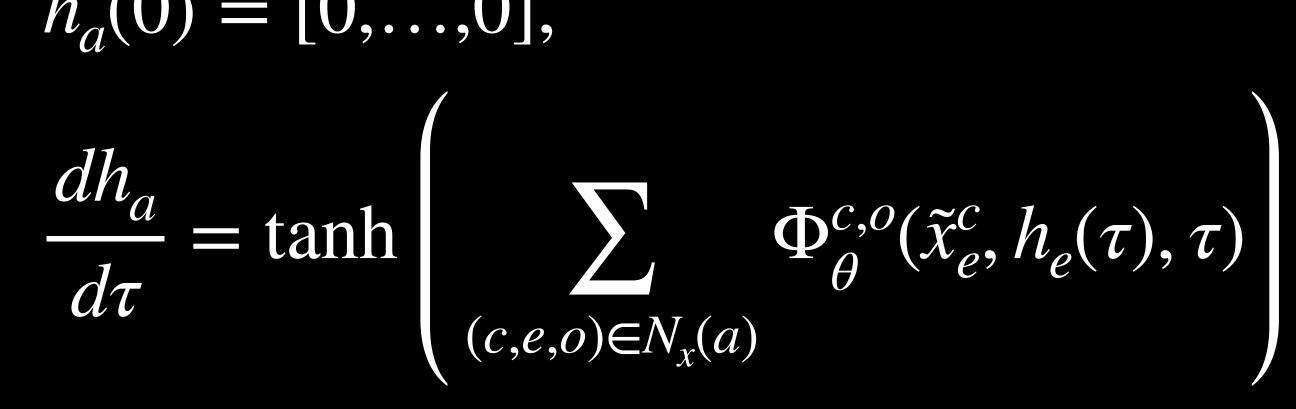
• Finally, we use the resulting latent state to produce a prediction for all hyper-

$\forall c \in \mathscr{C}, \forall e \in \mathscr{E}_x^c, \qquad \mu_e^c = \Psi_\theta^c(\tilde{x}_e^c, h_e^c(1)).$

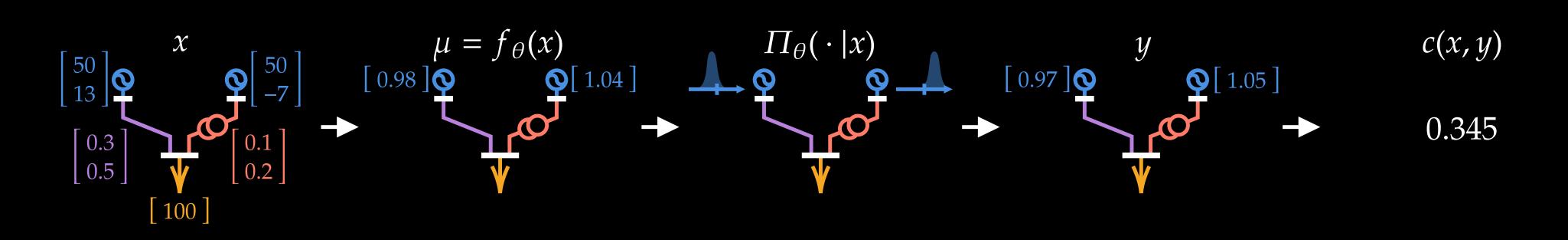
Neural Network Architecture **Overall System**

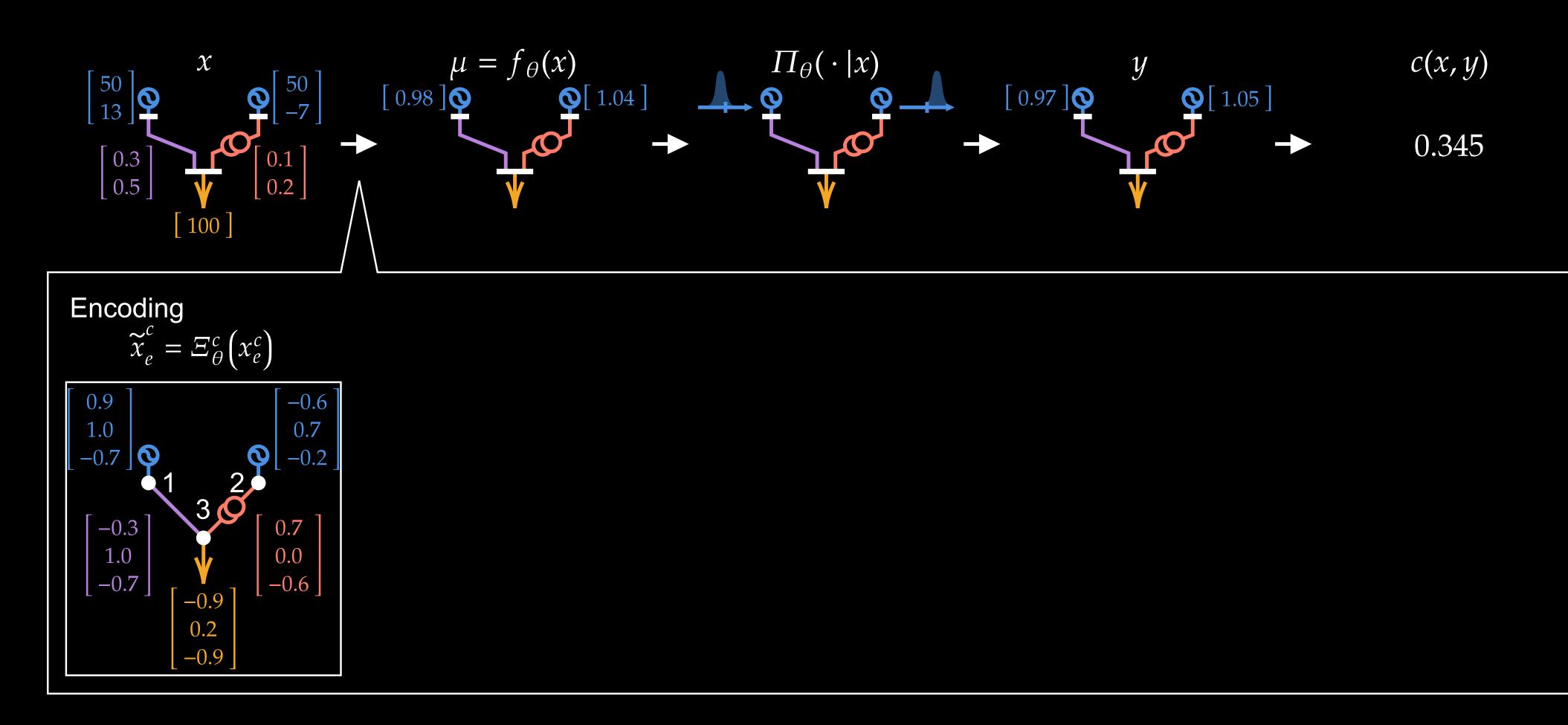
Here is the whole process,

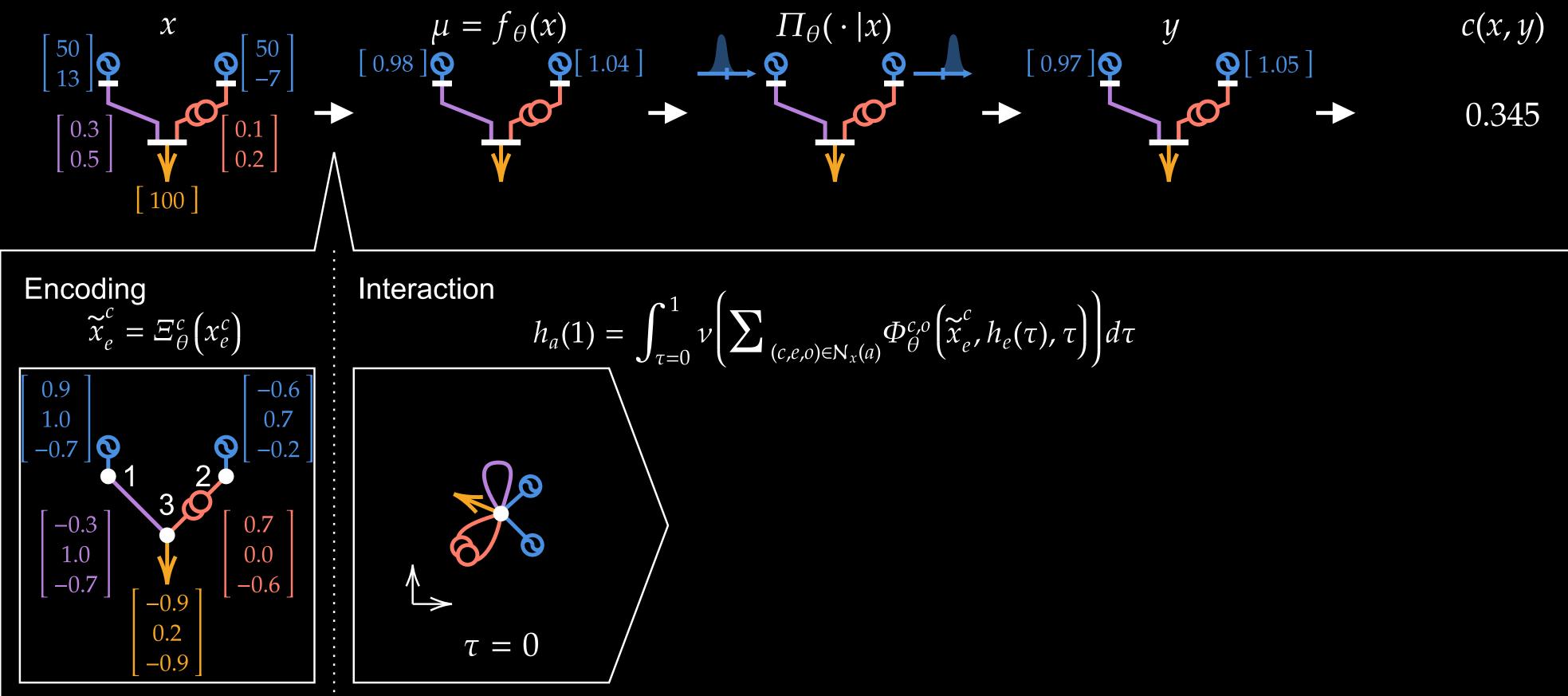
 $\forall (c, e), \qquad \tilde{x}_e^c = \Xi_{\theta}^c(x_e^c),$ $h_a(0) = [0, \dots, 0],$ $\forall a,$ $\forall a,$ $\forall (c, e),$

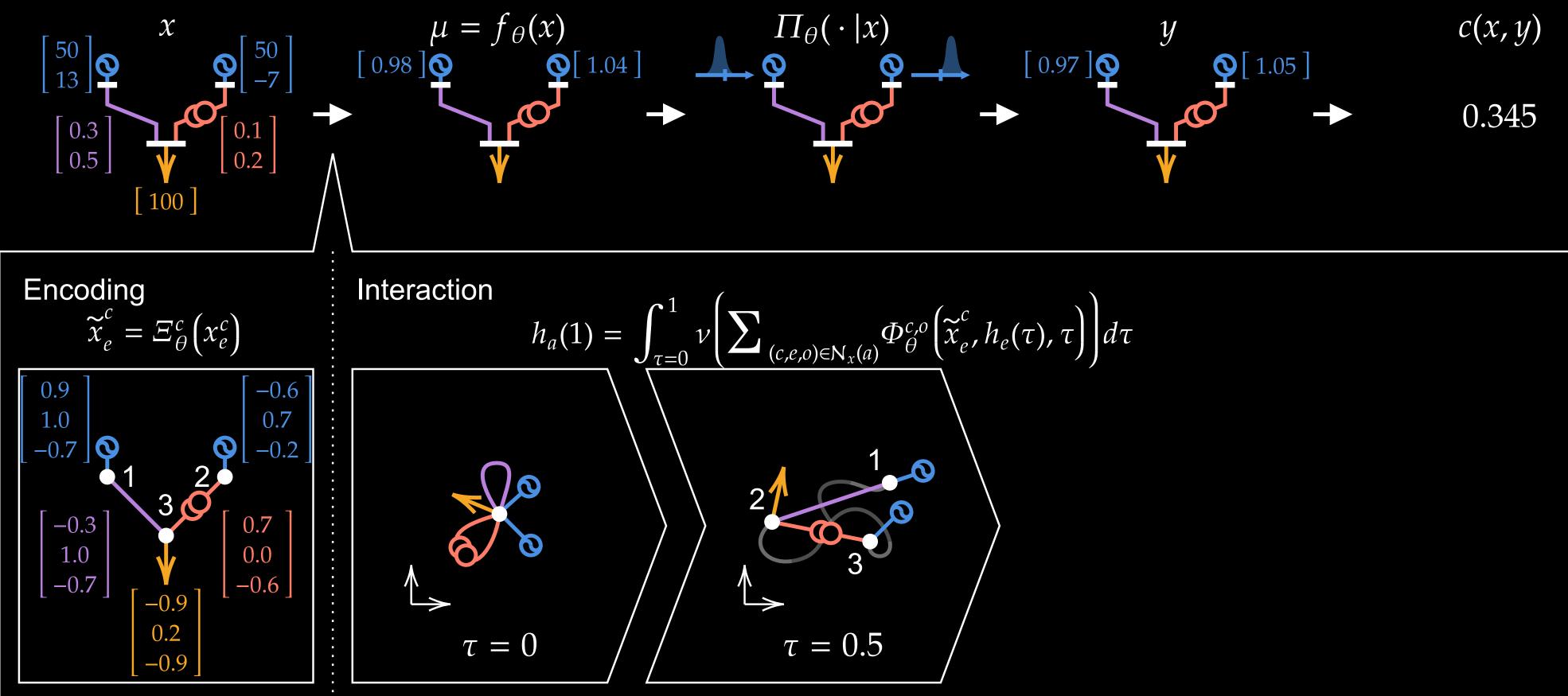


 $\mu_e^c = \Psi_{\theta}^c(\tilde{x}_e^c, h_e(1))$



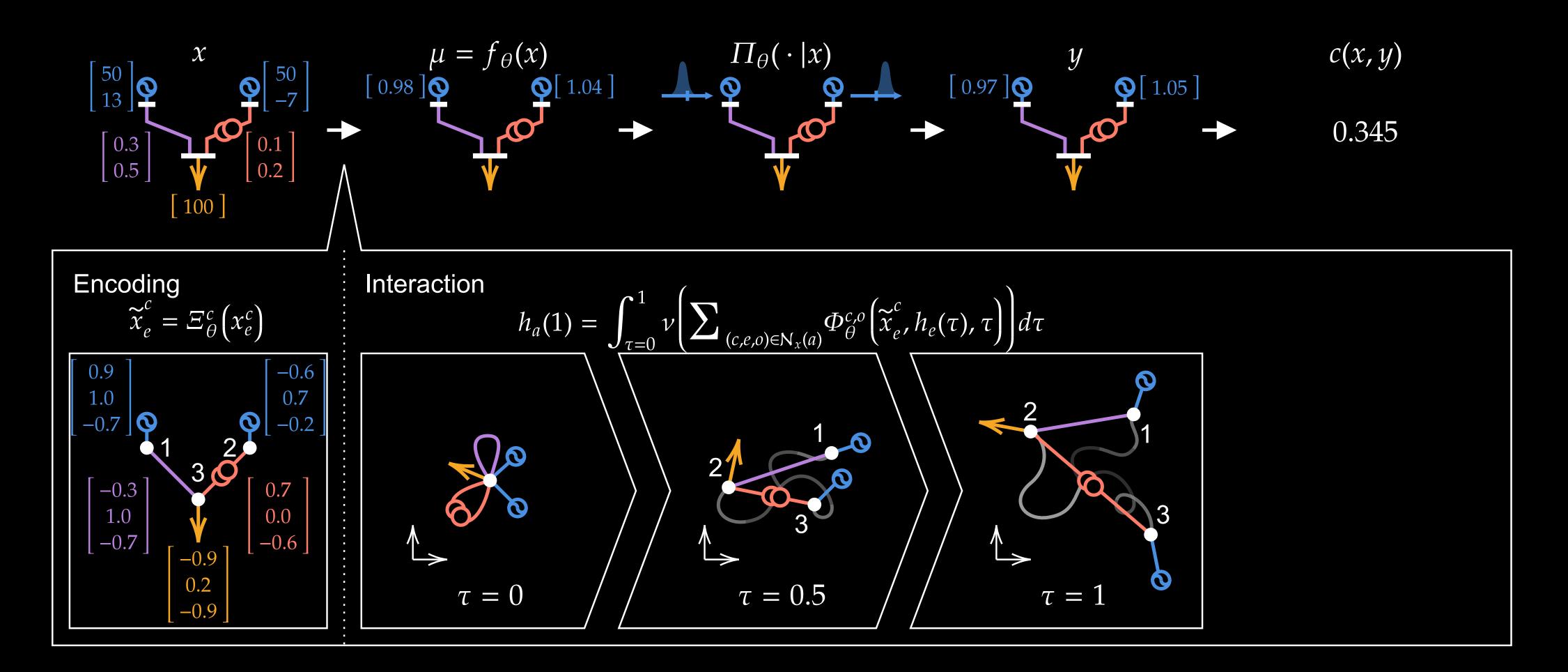


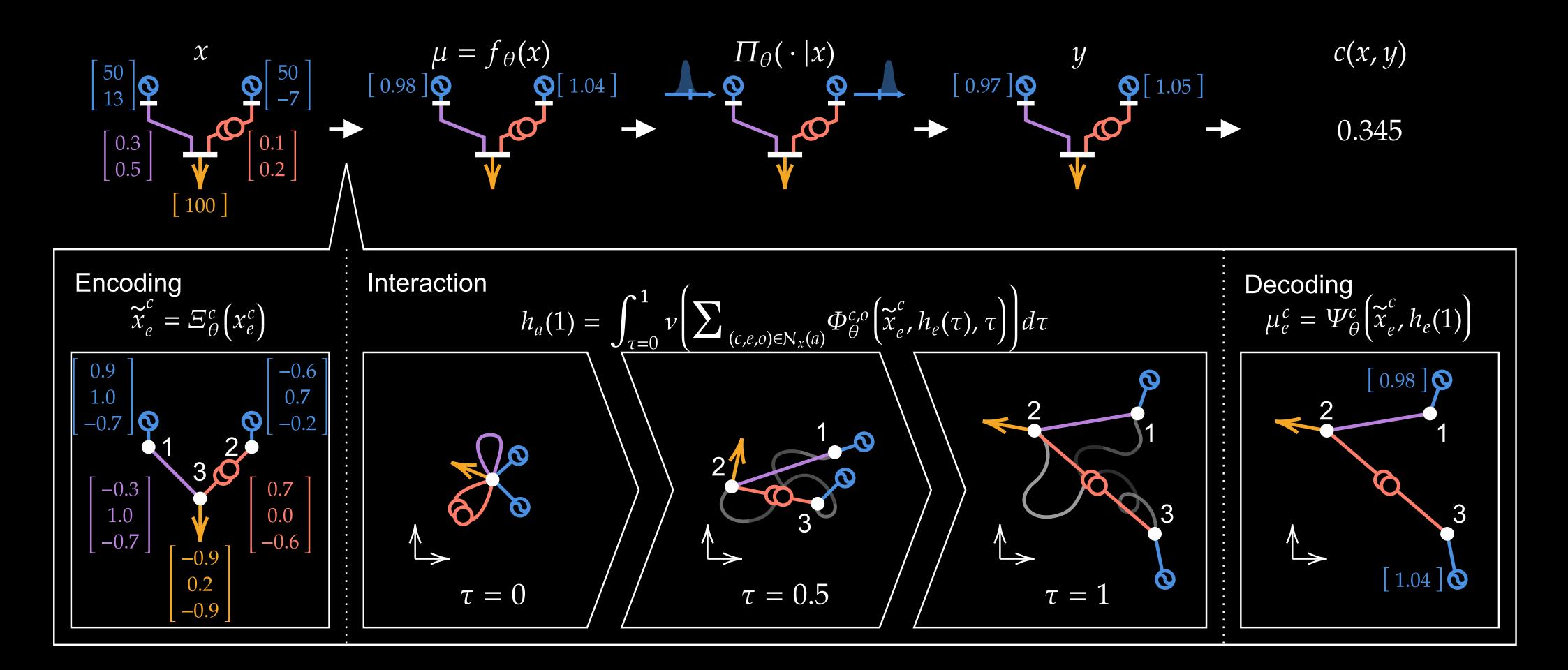




$$\Phi_{\theta}^{c,o}\left(\widetilde{x}_{e}^{c},h_{e}(\tau),\tau\right)d\tau$$

$$\int_{\alpha}^{1} \int_{\alpha}^{1} \int$$





Policy Training

Policy Training Algorithm

- called REINFORCE.
- For a certain x, we have

$$\nabla_{\theta} \mathbb{E}_{y \sim \Pi_{\theta}(\cdot|x)} \left[c(x, y) \right] = \mathbb{E}_{x}$$

estimation of the right term.

Because of the absence of sequentiality, we have chosen a basic RL method

$_{y \sim \Pi_{\theta}(\cdot|x)} \left[c(x,y) \nabla_{\theta} \log \Pi_{\theta}(y|x) \right].$

For a given x, we draw multiple actions $y \sim \Pi_{\theta}(\cdot | x)$ to obtain an empirical

Experiments

Experiments **Missing Data**

- Artificial data for now.
- etc.
 - Compatible with real-life data !

Results have not been published for now, but basically it works quite well ! It works on datasets with varying number of generators, lines, transformers,

Future Work

Future Work Main directions

- Improve sample efficiency of our training pipeline.
- Implement on real-life data.
- Consider discrete variables.
- Address other Power Systems issues.

Thank you

