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Social event

Source: https://www.ro80club.org/

Meeting point: Here
or tram stop
’Wilhelmshöhe Park’
in front of the
information!
Time: 15.00 here or
about 15.45 at
’Wilhelmshöhe Park’.
Dinner: 19.00 at
restaurant
Lichtenhainer
(Elfbuchenstraße 4
34119 Kassel)
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GAIN Research: Past,
current and future work
Josephine Thomas



Past work

Graph Neural Networks Designed for Different Graph Types: A Survey
published at TMLR
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Josephine Thomas∗, Alice Moallemy-Oureh∗, Silvia Beddar-Wiesing∗, Clara Holzhüter: Graph Neural Networks Designed for Different
Graph Types: A Survey, Transactions on Machine Learning Research, 2023, https://openreview.net/forum?id=h4BYtZ79uy

4/56

https://openreview.net/forum?id=h4BYtZ79uy


Past work

A Note on the Modeling Power of Different Graph Types
preprint available
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Josephine M. Thomas, Silvia Beddar-Wiesing, Alice Moallemy-Oureh, Rüdiger Nather: A Note on the Modeling Power of Different
Graph Types, https://arxiv.org/abs/2109.10708

4/56

https://arxiv.org/abs/2109.10708


Past work

Weisfeiler–Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural
Networks for Attributed and Dynamic Graphs
under review at Neural Networks

Which graphs/nodes can a GNN distinguish?
Which functions can a GNN approximate?
→ Extension of the work of D’Inverno et. al (2021) and Azizian et. al (2020) from
static node-attributed graphs to dynamic and fully attributed graphs

Beddar-Wiesing∗, D’Inverno∗, Graziani∗, Lachi∗, Moallemy-Oureh∗, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An
Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, https://arxiv.org/abs/2210.03990
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Past work

Using local activity encoding for dynamic graph pooling in stuctural-dynamic graphs:
student research abstract
published at ACM
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Silvia Beddar-Wiesing: Using local activity encoding for dynamic graph pooling in stuctural-dynamic graphs: student research abstract,
SAC ’22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing
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Past work

Continuous-Time Generative GNN for Attributed Dynamic Graphs: student research ab-
stract
published at ACM

Alice Moallemy-Oureh: Continuous-time generative graph neural network for attributed dynamic graphs: student research abstract,
SAC ’22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, https://doi.org/10.1145/3477314.3508018
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Past work

Power flow forecasts at transmission grid nodes using Graph Neural Networks
published at Energy and AI
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Dominik Beinert∗, Clara Holzhüter∗, Josephine M. Thomas, Stephan Vogt: Power flow forecasts at transmission grid nodes using
Graph Neural Networks, Energy and AI 2023, https://www.sciencedirect.com/science/article/pii/S2666546823000344
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Current and future work

Explainability of our algorithms
Implementation of FDGNN
Implementation of algorithms for structural dynamic and attribute dynamic graphs
Combining Reinforcement Learning with Graph Learning for use-cases on the
power grid
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Explainability in Graph
Neural Networks
Josephine Thomas



Explainability: Motivation

Source: https://carpentries-incubator.github.io/data-science-ai-senior-researchers/05-Problems-with-AI/index.html

We believe, the algorithm learned to classify wolfes and huskys with 80% accuracy...
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Explainability: Motivation

LIME, Ribeiro et al. 2016

..but it actually learned to recognize snow/bright background.
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Explainability for GNNs, an example: GraphLIME

GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks, Huang et al., 2023

For graphs, the most representative features of a nodes neighbors can be selected to
serve as an explanation for the classification result of that node.
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Explainability: Types of Explainability for GNNs

Explainability in Graph Neural Networks: A Taxonomic Survey, Yuan et al. 2022, IEEE Transactions on Pattern Analysis and Machine
Intelligence

Model-specific or model-agnostic?
Local or global?
Post-hoc or inherent?
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Explainability: What we need to consider to explain our models

Use case power grid:

Extreme need for safety

Local
Inherent (no need to explain the
explainers..1)

Need for speed

A lot of explainability methods for
GNNs on static graph so far

faithfulness, sparsity, correctness
and plausibility 23 ...
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2BAGEL, Rathee et al. 2022, https://arxiv.org/pdf/2206.13983.pdf
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Explainability: Prototype-based explanations

This bird is a clay-colored sparrow, because it has the prototypical wing/eyes...

Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead, Cynthia Rudin,
2019, Nat Mach Intell.
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Explainability: Prototype-based explanations

Discovering human-interpretable prototype graphs 1 is a similar method for graphs.

PAGE: Prototype-Based Model-Level, Explanations for Graph Neural Networks, Shin et al., 2022,
https://arxiv.org/pdf/2210.17159.pdf

Do you agree this is a promising method to explain our algorithms?
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Power flow forecasts at
transmission grid nodes
using Graph Neural Networks
Clara Holzhüter
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Power flow forecasts at transmission grid nodes using GNNs
Introduction

power grids are increasingly complex
Generation: Renewable energies fluctuate a lot
Consumption: more volatile due to electrification

→ Forecasting grid congestion becomes more difficult
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Power flow forecasts at transmission grid nodes using GNNs
Use Case: Vertical Power Flow

Power is generated more
decentralized
More power generation in the
distribution grid

Extra-High Voltage

High Voltage

Medium Voltage

Low Voltage

Transformers ExH/H
Transmission Grid

Distribution Grid

→ Altered power flow complicates grid calculations
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Power flow forecasts at transmission grid nodes using GNNs
Use Case: Transformers

Locations of transformers influence the power flow
patterns through

weather
Mix of generation
consumption pattern
...
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Power flow forecasts at transmission grid nodes using GNNs
Use Case: Transformers

Power Flows at transformers influence each other

Congestion
Grid switching actions
Maintenance
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Power flow forecasts at transmission grid nodes using GNNs
Implications for the Model

An according prediction model should consider:

Individual characteristics of transformers →Multi-Task
Interactions between transformers →GNN model
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Power flow forecasts at transmission grid nodes using GNNs
Problem Setup

Input: A Set of tranformers and corresponding features
Output: Power flow at each tranformer
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Power flow forecasts at transmission grid nodes using GNNs
Our Approach
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Power flow forecasts at transmission grid nodes using GNNs
Our Approach: Baysian Multi-Task Embedding

Idea: Solve multiple similar tasks
by combining knowledge of all
tasks during training while still
allow for differences

share weights between all
tasks and train individual
embedding for each task
pass the embedding to the
NN in addition to other input
variables.
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Power flow forecasts at transmission grid nodes using GNNs
Our Approach: Baysian Multi-Task Embedding

Embed the transformers into
latent space

latent representation modelled
as multivariate normal
distribution
is trained jointly with overall
NN by adding KL-divergence
to the loss
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Power flow forecasts at transmission grid nodes using GNNs
Our Approach: GNN Model

Architecture

2 layers of graph convolutions
each node aggregates the embeddings
of its neighbour
attention coefficient α weights each
neighbour
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Power flow forecasts at transmission grid nodes using GNNs
Experiments: Dataset

Two datasets of German TSO

approx. 175 transformers

Features: weather, date/time, load and price
forecast
edges are defined by distance between
transformers (distance 0km, 50km )
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Power flow forecasts at transmission grid nodes using GNNs
Results Sparse Graph: BEMTL-GNN vs BEMTL
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Transformers share the
same location
GNN produces same
output for both
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BEMTL-GNN makes
different predictions using
the same input → much
more accurate prediction
for both nodes

→ The embedding is essential
to model individual
characteristics
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Power flow forecasts at transmission grid nodes using GNNs
Results Dense Graph

RMSE is very similar to sparsely connected graph
BEMTL-GNN performs better than the BEMTL only on approx. 75% of the
transformers
interactions between transformers could not be observed as strongly?
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→ impact of further-away transformers not strong enaugh?
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weights, other GNN Layers, ...
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Power flow forecasts at transmission grid nodes using GNNs
Conclusion

We combined a Multi-Task approach with an attention-based GNN to capture
individual latent characteristics of transformers and their interactions
For a sparsely connected graph this model shows best performance amongst
compared models
For a more densely connected, the influence of neighbouring transformers can be
observed only to a small extent

→ Experiments on sparse graph as Proof of concept
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Most of the GNNs in literature can only handle (unattributed) growing graphs.
=⇒ Deletions of nodes are not modeled
=⇒ Nodes and edges do not necessarily have attributes
=⇒ Attributes are not dynamic as well
Neural Spatio-Temporal Point Processes is an upcoming field, but only few
approaches address dynamic graphs and mainly focus on the graph’s edges.
Most of the models address only Link Prediction and Event Time Prediction
Attribute Prediction mostly of nodes can be just found for GNNs working on
descrete-time and without any structural changes of the graph.
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Motivation

The FDGNN is capable of processing
both structural and attribute dynamics and
the efficient graph representation as graph streams

and learns
an expressive vector representation of the graph incl. its attributes and
functions representing the temporal evolution of the graph

to address potentially different learning problems, such as
event and event time prediction or
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FDGNN: Fully Dynamic Graph Neural Network7

Input: Graph Stream

graph
stream

Start graph and stream of different events
Structural changes: addition/deletion of nodes or edges
Attribute changes of nodes or edges
not necessarily equidistant time

start graph events1 events2
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FDGNN: Fully Dynamic Graph Neural Network7

Preprocessing: Node/Edge Activity

node/edge 
activity

attribute
embeddings

preprocessing

Activity encodes existence of node and edges at a time

active node 7−→ 1
inactive node 7−→ 0

Thereby, the deletion behavior can also be learned
afterwards
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Preprocessing: Attribute Embedding

node/edge 
activity

attribute
embeddings

preprocessing

Vector representation of the node or edge textbfattributes
Attribute embedding as preprocessing
Depending on dataset considering a suitable attribute
embedding into the Rn (e.g., word2vec)

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 43/56



FDGNN: Fully Dynamic Graph Neural Network7

FDGNN Architecture

graph
stream

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

node/edge 
activity

attribute
embeddings

preprocessing

output

neural temporal
point process

spatio-
temporal PP

marked
TPP

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 44/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Self-Propagation
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Embedding: Neighborhood-Propagation

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

Cumulates local neighborhood information
in the graph (seperately for nodes and edges)
Classical Graph Attention Neural Network
(GATv2, without self-loops)

node neighborhood
propagation

edge neighborhood
propagation

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 46/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Neighborhood-Propagation

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

Cumulates local neighborhood information
in the graph (seperately for nodes and edges)
Classical Graph Attention Neural Network
(GATv2, without self-loops)

node neighborhood
propagation

edge neighborhood
propagation

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 46/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Exogeneous Drive

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

time interval between current event and the last
event on the same node/edge

start graph event1 event4

exogeneous drive

... t

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 47/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Exogeneous Drive

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

time interval between current event and the last
event on the same node/edge

start graph event1 event4

exogeneous drive

... t

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 47/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Attribute Propagation

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

Encodes temporal evolution of node/edge
attributes
Recurrent Layer

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 48/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding: Attribute Propagation

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

Encodes temporal evolution of node/edge
attributes
Recurrent Layer

7Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469 48/56



FDGNN: Fully Dynamic Graph Neural Network7

Embedding

self-
propagation

neighborhood-
propagation

node/edge embeddings

exogeneous
drive

attribute
propagation

the event embedding is then determined by the
sum of the modules
passed through an activation function
one embedding vector for each node and edge
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FDGNN Architecture
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Temporal Point Process (TPP)

neural temporal
point process
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Temporal Point Process (TPP):
probabilistic generative model for continuous-time
event sequences
can model specific temporal pattern in variable-length
event sequences
conditional probability over time is often defined via
conditional intensity functions considering the history
intensity functions represent number of events over time
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Neural Temporal Point Process (NTPP)
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Neural TPP:

extends TPPs to the Deep Learning approach
learns intensity functions with Neural Networks
allows for learning more complex temporal pattern
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Marked Spatio-Temporal Point Process
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space is determined by location in graph (node/edge)
marks (additional event information) correspond to
node/edge attributes
intensity function is the product of spatio-temporal and
mark intensities
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FDGNN: Marked Neural Spatio-Temporal Point Process
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Training and Prediction

Update the parameter set by, e.g., maximizing the likelihood of observed events
and
minimizing the intensity of unobserved events (survival probability)
loss function is approximated by Monte Carlo Sampling
predictions can be directly inferred using the probability function
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Conclusion

FDGNN processes dynamic graphs with structural and attribute changes
preprocessing enables handling of attributes of arbitrary type and learning of
deletions
the embedding module considers the entire complex information
finally, the history of embeddings in the TPPs is processed to make various
predictions
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Thank you for your attention!

Questions?

P.S.: We are looking for new colleagues :)
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