Expectation Complete Graph Embeddings Using Graph Homomorphisms

Workshop: Hot Topics in Graph Neural Networks, GAIN Group, Uni Kassel

Maximilian Thiessen, Pascal Welke, and Thomas Gärtner 25.10.2022

TU Wien Vienna | Austria Research Unit Machine Learning

Let \mathcal{G} be the set of all (finite) graphs, V be a vector space (e.g., \mathbb{R}^d)

Let \mathcal{G} be the set of all (finite) graphs, V be a vector space (e.g., \mathbb{R}^d) A graph embedding $\varphi : \mathcal{G} \to V$ is permutation-invariant if

• For all isomorphic graphs $G \simeq H$: $\varphi(G) = \varphi(H)$

Let \mathcal{G} be the set of all (finite) graphs, V be a vector space (e.g., \mathbb{R}^d) A graph embedding $\varphi : \mathcal{G} \to V$ is permutation-invariant if

• For all isomorphic graphs $G \simeq H$: $\varphi(G) = \varphi(H)$

A permutation-invariant graph embedding φ is complete if

• for all non-isomorphic graphs $G \neq H : \varphi(G) \neq \varphi(H)$

Originated from complete graph kernels [Gärtner et al., COLT 2003]

- \cdot let \mathcal{H} be a dot product space¹
- graph kernel $k_{\varphi}(G, H) = \langle \varphi(G), \varphi(H) \rangle_{\mathcal{H}}$ with $\varphi : \mathcal{G} \to \mathcal{H}$
- $\cdot \ k_{\varphi}$ is complete if φ is complete

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding graph isomorphism

 not known to be NP-hard and not known to be computable in polynomial-time Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding graph isomorphism

 not known to be NP-hard and not known to be computable in polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, ...

What if we keep completeness ...

... but just in expectation

Let $\varphi_X : \mathcal{G} \to V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^1

Let $\varphi_X : \mathcal{G} \to V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^1 We call φ_X complete in expectation if the expectation

$$\mathbb{E}_{X \sim \mathcal{D}}[\varphi_X(\cdot)] = \sum_{t \in \mathcal{X}} \Pr(X = t)\varphi_t(\cdot)$$

is a complete graph embedding

Let $\varphi_X : \mathcal{G} \to V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^1 We call φ_X complete in expectation if the expectation

$$\mathbb{E}_{X \sim \mathcal{D}}[\varphi_X(\cdot)] = \sum_{t \in \mathcal{X}} \Pr(X = t)\varphi_t(\cdot)$$

is a complete graph embedding

What is the **benefit**?

Sampling X_1, X_2, X_3, \ldots will eventually make the joint embedding $(\varphi_{X_1}(G), \varphi_{X_2}(G), \varphi_{X_3}(G), \ldots)$ arbitrarily expressive

What if we keep completeness but just in expectation ... in polynomial time

Let F, G be graphs. A map $\varphi: V(F) \rightarrow V(G)$ is a graph homomorphism if

• φ preserves edges: $\{v, w\} \in E(F)$ implies $\{\varphi(v), \varphi(w)\} \in E(G)$

We denote by hom(F, G) the number of homomorphisms from F to G

Let

$$\varphi_{\infty}(G) = \hom(\mathcal{G}, G) = ((\hom(F, G))_{F \in \mathcal{G}})$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Graph homomorphisms and Lovász' theorem

Let

$$\varphi_{\infty}(G) = \hom(\mathcal{G}, G) = ((\hom(F, G))_{F \in \mathcal{G}} = \begin{pmatrix} \vdots \\ hom(F, G) \end{pmatrix}$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Let

$$\varphi_{\infty}(G) = \hom(\mathcal{G}, G) = ((\hom(F, G))_{F \in \mathcal{G}})$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff $\varphi_{\infty}(G) = \varphi_{\infty}(H)$ $\Rightarrow \varphi_{\infty}(\cdot)$ is complete! Let

$$\varphi_{\infty}(G) = \hom(\mathcal{G}, G) = ((\hom(F, G))_{F \in \mathcal{G}})$$

denote the countable vector of homomorphism counts indexed by $F\in\mathcal{G}$

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff $\varphi_{\infty}(G) = \varphi_{\infty}(H)$ $\Rightarrow \varphi_{\infty}(\cdot)$ is complete!

 Our goal: sample from φ_∞ to devise an efficiently computable and expectation complete embedding

Why graph homomorphisms

They capture important graph properties:

Why graph homomorphisms

They capture aspects important for learning:

Why graph homomorphisms

They capture aspects important for learning:

Universality: Any permutation-invariant function $f : \mathcal{G} \to \mathbb{R}^d$ can be approximated arbitrarily well by a polynomial of $\{\mathsf{hom}(F,G) \mid F \in \mathcal{G}\}$ [NT and Maehara, 2020]

They can be used for subgraph counting [Curticapean et al., STOC 2017]

Let

- $\cdot \, \mathcal{G}_n$ be the set of graphs with up to *n* vertices,
- $\cdot \mathcal{D}$ a distribution on \mathcal{G}_n with full support,
- \cdot a random pattern $F \sim D$, and
- · $\varphi_n(\cdot) = \hom(\mathcal{G}_n, \cdot)$

Let

- \mathcal{G}_n be the set of graphs with up to *n* vertices,
- $\cdot \mathcal{D}$ a distribution on \mathcal{G}_n with full support,
- \cdot a random pattern $F \sim D$, and
- · $\varphi_n(\cdot) = \hom(\mathcal{G}_n, \cdot)$

Define

 $\varphi_F(G)=(\varphi_n(G))_F$

which samples the 'Fth' entry of φ_n

Let

- $\cdot \, \mathcal{G}_n$ be the set of graphs with up to *n* vertices,
- $\cdot \mathcal{D}$ a distribution on \mathcal{G}_n with full support,
- \cdot a random pattern *F* ~ *D*, and

$$\varphi_n(\cdot) = \hom(\mathcal{G}_n, \cdot)$$
which samples the 'Fth' entry of φ_n

$$\varphi_F(G) = (\varphi_n(G))_F = \begin{pmatrix} O \\ \vdots \\ O \\ hom(F_n(G))_F \end{pmatrix} F$$

D

Μ

Let

- \mathcal{G}_n be the set of graphs with up to *n* vertices,
- $\cdot \mathcal{D}$ a distribution on \mathcal{G}_n with full support,
- \cdot a random pattern $F \sim D$, and
- · $\varphi_n(\cdot) = \hom(\mathcal{G}_n, \cdot)$

Define

 $\varphi_F(G)=(\varphi_n(G))_F$

which samples the 'Fth' entry of φ_n

Theorem. φ_F is complete in expectation (on \mathcal{G}_n)

Can we generalise to all finite graphs \mathcal{G} ?

Can we generalise to all finite graphs \mathcal{G} ?

Problem: φ_{∞} does not yield a norm / dot product

• e.g., $|\varphi_{\infty}(G)|^2 = \langle \varphi_{\infty}(G), \varphi_{\infty}(G) \rangle = \infty$ in most cases

Can we generalise to all finite graphs \mathcal{G} ?

Problem: φ_{∞} does not yield a norm / dot product

• e.g., $|\varphi_{\infty}(G)|^2 = \langle \varphi_{\infty}(G), \varphi_{\infty}(G) \rangle = \infty$ in most cases

Solution: only count patterns up to |V(G)|:

$$\overline{\varphi}_{\infty}(G) = \left(\hom_{|V(G)|}(F,G)\right)_{F \in \mathcal{G}} \text{ where}$$

$$\hom_{|V(G)|}(F,G) = \begin{cases} \hom(F,G) & \text{if } |V(F)| \le |V(G)|, \\ 0 & \text{if } |V(F)| > |V(G)|. \end{cases}$$

Can we generalise to all finite graphs \mathcal{G} ?

Problem: φ_{∞} does not yield a norm / dot product

• e.g., $|\varphi_{\infty}(G)|^2 = \langle \varphi_{\infty}(G), \varphi_{\infty}(G) \rangle = \infty$ in most cases

Solution: only count patterns up to |*V*(*G*)|:

$$\overline{\varphi}_{\infty}(G) = \left(\hom_{|V(G)|}(F,G)\right)_{F \in \mathcal{G}} \text{ where}$$

$$\hom_{|V(G)|}(F,G) = \begin{cases} \hom(F,G) & \text{if } |V(F)| \le |V(G)|, \\ 0 & \text{if } |V(F)| > |V(G)|. \end{cases}$$

Theorem. $\overline{\varphi}_{\infty}(\cdot)$ is complete and $k_{\min}(G, H) = \langle \overline{\varphi}_{\infty}(G), \overline{\varphi}_{\infty}(H) \rangle$ is a complete graph kernel.

Computational complexity

Computing hom(F, G) is NP-hard in general.

If we take the treewidth of pattern *F* into account the runtime is [Díaz et al., 2002]:

 $\mathcal{O}\left(|V(F)||V(G)|^{\mathsf{tw}(F)+1}\right)$

Computing hom(F, G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]: $\mathcal{O}(|V(F)||V(G)|^{\mathsf{tw}(F)+1})$

Idea: define distribution \mathcal{D} on \mathcal{G}_n s.t. runtime is polynomial in expectation!

Computing hom(F, G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]: $\mathcal{O}(|V(F)||V(G)|^{\mathsf{tw}(F)+1})$

Idea: define distribution \mathcal{D} on \mathcal{G}_n s.t. runtime is polynomial in expectation!

General recipe:

- 1. pick *n* as the maximum number of vertices in the training set
- 2. sample treewidth upper bound k
- 3. sample a maximal graph F' with treewidth k
- 4. take a random subgraph F of F'

Computing hom(F, G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]: $\mathcal{O}(|V(F)||V(G)|^{\mathsf{tw}(F)+1})$

Idea: define distribution \mathcal{D} on \mathcal{G}_n s.t. runtime is polynomial in expectation!

General recipe:

- 1. pick *n* as the maximum number of vertices in the training set
- 2. sample treewidth upper bound k
- 3. sample a maximal graph F' with treewidth k
- 4. take a random subgraph F of F'

E.g., $k \sim \text{Poisson}(\lambda)$ with $\lambda \leq \frac{1+d \log n}{n}$ guarantees runtime $\mathcal{O}\left(|V(G)|^{d+2}\right)$

Fix $\ell \in \mathbb{N}$, e.g., $\ell = 30$

Sample F_1, \ldots, F_ℓ from \mathcal{D} , which guarantees completeness and poly-time in expectation

Fix $\ell \in \mathbb{N}$, e.g., $\ell = 30$

Sample F_1, \ldots, F_ℓ from \mathcal{D} , which guarantees completeness and poly-time in expectation

Construct

$$\varphi^{\ell}(G) = \begin{pmatrix} \mathsf{hom}(F_1, G) \\ \vdots \\ \mathsf{hom}(F_{\ell}, G) \end{pmatrix}$$

Fix $\ell \in \mathbb{N}$, e.g., $\ell = 30$

Sample F_1, \ldots, F_ℓ from \mathcal{D} , which guarantees completeness and poly-time in expectation

Construct

$$\varphi^{\ell}(G) = \begin{pmatrix} \mathsf{hom}(F_1, G) \\ \vdots \\ \mathsf{hom}(F_{\ell}, G) \end{pmatrix}$$

Theorem. φ^{ℓ} is complete in expectation and can be computed in polynomial time in expectation.

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

- GHC-tree(6): all tree patterns up to size 6
- GHC-cycle(8): all cycle patterns up to size 8

Additionally:

- graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]
- GIN [Xu et al., ICLR 2019]

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6) GHC-cycle(8) GNTK GIN	89.28 ± 8.26 87.81 ± 7.46 89.46 ± 7.03 89.40 ± 5.60	$72.10 \pm 2.62 70.93 \pm 4.54 75.61 \pm 3.98 70.70 \pm 1.10$	$48.60 \pm 4.40 47.41 \pm 3.67 51.91 \pm 3.56 43.20 \pm 2.00$	$7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00$	$\begin{array}{c} 10.00 \pm 0.00 \\ 100.00 \pm 0.00 \\ 10.00 \pm 0.00 \\ 10.00 \pm 0.00 \end{array}$
ours (SVM) ours (MLP)	87.94 ± 0.01 88.55 ± 0.01	70.37 ± 0.01 70.81 ± 0.01	47.34 ± 0.01 48.29 ± 0.01	100.00 ± 0.00 40.524 ± 0.00	37.33 ± 0.1 13.27± 0.01

	\sim				
method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6)	89.28 ± 8.26	72.10 ± 2.62	48.60 ± 4.40	7.14 ± 0.00	10.00 ± 0.00
GHC-cycle(8) GNTK	87.81 ± 7.46 89.46 ± 7.03	70.93 ± 4.54 75.61 ± 3.98	47.41 ± 3.67 51.91 ± 3.56	7.14 ± 0.00 7.14 ± 0.00	100.00 ± 0.00 10.00 ± 0.00
GIN	89.40 ± 5.60	70.70 ± 1.10	43.20 ± 2.00	7.14 ± 0.00	10.00 ± 0.00
ours (SVM)	87.94 ± 0.01	70.37 ± 0.01	47.34 ± 0.01	100.00 ± 0.00	37.33 ± 0.1
ours (MLP)	88.55 ± 0.01	70.81 ± 0.01	48.29 ± 0.01	40.524 ± 0.00	13.27± 0.01

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6) GHC-cycle(8) GNTK GIN	89.28 ± 8.26 87.81 ± 7.46 89.46 ± 7.03 89.40 ± 5.60	$72.10 \pm 2.62 70.93 \pm 4.54 75.61 \pm 3.98 70.70 \pm 1.10$	$48.60 \pm 4.40 47.41 \pm 3.67 51.91 \pm 3.56 43.20 \pm 2.00$	$7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00 \\7.14 \pm 0.00$	$\begin{array}{c} 10.00 \pm 0.00 \\ 100.00 \pm 0.00 \\ 10.00 \pm 0.00 \\ 10.00 \pm 0.00 \end{array}$
ours (SVM) ours (MLP)	87.94 ± 0.01 88.55 ± 0.01	70.37 ± 0.01 70.81 ± 0.01	47.34 ± 0.01 48.29 ± 0.01	100.00 ± 0.00 40.524 ± 0.00	_

methodMUTAGIMDB-BINIMDB-MULTIPAULUS25CSLGHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00 GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00 GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00 GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00 ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1 ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 32.7 ± 0.01						
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00 GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00 GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00 ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00	method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
	GHC-cycle(8) GNTK	87.81 ± 7.46 89.46 ± 7.03	70.93 ± 4.54 75.61 ± 3.98	47.41 ± 3.67 51.91 ± 3.56	7.14 ± 0.00 7.14 ± 0.00	100.00 ± 0.00 10.00 ± 0.00
						- /

Choose number of patterns ℓ and distribution $\mathcal D$ adaptively:

- stop sampling when expressive enough
- $\cdot\,$ pick ${\cal D}$ based on the task or a given dataset
- frequent / interesting patterns

Choose number of patterns ℓ and distribution $\mathcal D$ adaptively:

- stop sampling when expressive enough
- $\cdot\,$ pick ${\cal D}$ based on the task or a given dataset
- frequent / interesting patterns

Going beyond expressiveness: similarity!

- if $G \approx H$ then $\varphi(G) \approx \varphi(H)$
- possible solution: cut distance (captures local and global properties)

Choose number of patterns ℓ and distribution $\mathcal D$ adaptively:

- stop sampling when expressive enough
- $\cdot\,$ pick ${\cal D}$ based on the task or a given dataset
- frequent / interesting patterns

Going beyond expressiveness: similarity!

- if $G \approx H$ then $\varphi(G) \approx \varphi(H)$
- possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings

Pointers

Talk mostly based on

• M.T.*, Pascal Welke*, and Thomas Gärtner [GLFrontiers@NeurIPS 2022]

Further related work

- Martin Grohe. "word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data." [PoDS 2022]
- Pascal Kühner. Master Thesis: "Graph Embeddings Based on Homomorphism Counts." [2021]
- Pablo Barceló, et al. "Graph Neural Networks with Local Graph Parameters." [NeurIPS 2021]
- Paul Beaujean et al., "Graph Homomorphism Features: Why Not Sample?" [GEM@ECMLPKDD 2021]
- Hoang Nguyen and Takanori Maehara. "Graph homomorphism convolution." [ICML 2020]
- Lingfei Wu, et al. "Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding." [KDD 2019]
- Till Schulz, et al. "Mining Tree Patterns with Partially Injective Homomorphisms" [ECMLPKDD 2018]