Expectation Complete Graph Embeddings Using Graph Homomorphisms

Workshop: Hot Topics in Graph Neural Networks, GAIN Group, Uni Kassel

Maximilian Thiessen, Pascal Welke, and Thomas Gärtner
25.10.2022

TU Wien
Vienna | Austria
Research Unit Machine Learning

Complete graph embeddings

Let \mathcal{G} be the set of all (finite) graphs, \vee be a vector space (e.g., \mathbb{R}^{d})

Complete graph embeddings

Let \mathcal{G} be the set of all (finite) graphs, V be a vector space (e.g., \mathbb{R}^{d})
A graph embedding $\varphi: \mathcal{G} \rightarrow V$ is permutation-invariant if

- For all isomorphic graphs $G \simeq H: \varphi(G)=\varphi(H)$

Complete graph embeddings

Let \mathcal{G} be the set of all (finite) graphs, V be a vector space (e.g., \mathbb{R}^{d})
A graph embedding $\varphi: \mathcal{G} \rightarrow V$ is permutation-invariant if

- For all isomorphic graphs $G \simeq H: \varphi(G)=\varphi(H)$

A permutation-invariant graph embedding φ is complete if

- for all non-isomorphic graphs $G \neq H: \varphi(G) \neq \varphi(H)$

Complete graph embeddings

Originated from complete graph kernels [Gärtner et al., COLT 2003]

- let \mathcal{H} be a dot product space ${ }^{1}$
- graph kernel $k_{\varphi}(G, H)=\langle\varphi(G), \varphi(H)\rangle_{\mathcal{H}}$ with $\varphi: \mathcal{G} \rightarrow \mathcal{H}$
- k_{φ} is complete if φ is complete

Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding graph isomorphism

- not known to be NP-hard and not known to be computable in polynomial-time

Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding graph isomorphism

- not known to be NP-hard and not known to be computable in polynomial-time

Typical solution: drop completeness for efficiency

- most practical graph kernels, GNNs, Weisfeiler Leman test, ...

What if we keep completeness ...
... but just in expectation

Expectation complete graph embeddings

Let $\varphi_{X}: \mathcal{G} \rightarrow V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^{1}

Expectation complete graph embeddings

Let $\varphi_{X}: \mathcal{G} \rightarrow V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^{1} We call φ_{x} complete in expectation if the expectation

$$
\underset{X \sim \mathcal{D}}{\mathbb{E}}\left[\varphi_{X}(\cdot)\right]=\sum_{t \in \mathcal{X}} \operatorname{Pr}(X=t) \varphi_{t}(\cdot)
$$

is a complete graph embedding

Expectation complete graph embeddings

Let $\varphi_{X}: \mathcal{G} \rightarrow V$ depend on a random variable X drawn from a distr. \mathcal{D} over a set \mathcal{X}^{1} We call φ_{x} complete in expectation if the expectation

$$
\underset{X \sim \mathcal{D}}{\mathbb{E}}\left[\varphi_{X}(\cdot)\right]=\sum_{t \in \mathcal{X}} \operatorname{Pr}(X=t) \varphi_{t}(\cdot)
$$

is a complete graph embedding
What is the benefit?

Sampling $X_{1}, X_{2}, X_{3}, \ldots$ will eventually make the joint embedding ($\varphi_{X_{1}}(G), \varphi_{X_{2}}(G), \varphi_{X_{3}}(G), \ldots$) arbitrarily expressive

What if we keep completeness but just in expectation ... in polynomial time

Graph homomorphisms and Lovász' theorem

Let F, G be graphs. A map $\varphi: V(F) \rightarrow V(G)$ is a graph homomorphism if

- φ preserves edges: $\{v, w\} \in E(F)$ implies $\{\varphi(v), \varphi(w)\} \in E(G)$

We denote by hom (F, G) the number of homomorphisms from F to G

Graph homomorphisms and Lovász' theorem

Let

$$
\varphi_{\infty}(G)=\operatorname{hom}(\mathcal{G}, G)=\left((\operatorname{hom}(F, G))_{F \in \mathcal{G}}\right.
$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Graph homomorphisms and Lovász' theorem

Let

$$
\varphi_{\infty}(G)=\operatorname{hom}(\mathcal{G}, G)=\left((\operatorname{hom}(F, G))_{F \in \mathcal{G}}=\binom{\operatorname{hom}(F, \omega)}{\vdots}\right.
$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Graph homomorphisms and Lovász' theorem

Let

$$
\varphi_{\infty}(G)=\operatorname{hom}(\mathcal{G}, G)=\left((\operatorname{hom}(F, G))_{F \in \mathcal{G}}\right.
$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff $\varphi_{\infty}(G)=\varphi_{\infty}(H)$
$\Rightarrow \varphi_{\infty}(\cdot)$ is complete!

Graph homomorphisms and Lovász' theorem

Let

$$
\varphi_{\infty}(G)=\operatorname{hom}(\mathcal{G}, G)=\left((\operatorname{hom}(F, G))_{F \in \mathcal{G}}\right.
$$

denote the countable vector of homomorphism counts indexed by $F \in \mathcal{G}$

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff $\varphi_{\infty}(G)=\varphi_{\infty}(H)$
$\Rightarrow \varphi_{\infty}(\cdot)$ is complete!

Our goal: sample from φ_{∞} to devise an efficiently computable and expectation complete embedding

Why graph homomorphisms

They capture important graph properties:
$\operatorname{hom}(\{0\}, G)=|V(G)|$
$\operatorname{hom}(\{0-0\}, a)=2|E(a)|$
$\operatorname{hom}\left(\left\{0,0-0,0 q_{0}, \hat{R}_{0}, \cdots\right\}, G\right)$
$\hat{\leqslant}$ degree sequence of G
$\operatorname{hom}(\{0, \infty, a, q, ? \square\}, \cdots\}, G)$ $\hat{\wedge}$ eigenvalues of adj (G)

Why graph homomorphisms

They capture aspects important for learning:
$\operatorname{hom}(\{F \mid F$ is a tree $\}, G)$ 介 $1-W L \hat{=} G N D_{s}$
$\operatorname{nom}(\{F \mid t w(F) \leqslant k\}, G) \widehat{=} k-\omega C=h-G N N_{s}$
$\hat{\text { treewidth of }}$ F ("tree-ileness")

Why graph homomorphisms

They capture aspects important for learning:

$$
\begin{aligned}
& \operatorname{hom}(\{F \mid F \text { is a tree }\}, G) \hat{=1-W L \hat{=} G N V_{s} .} \\
& \operatorname{nom}(\{F \mid t w(F) \leqslant k\}, G) \widehat{=} h-W C \cong h-G N N_{s} \\
& \hat{\text { treewidth of }} \text { F ("tree-ileness") }^{\text {t. }}
\end{aligned}
$$

Universality: Any permutation-invariant function $f: \mathcal{G} \rightarrow \mathbb{R}^{d}$ can be approximated arbitrarily well by a polynomial of $\{\operatorname{hom}(F, G) \mid F \in \mathcal{G}\}$ [NT and Maehara, 2020]

Why graph homomorphisms

They can be used for subgraph counting [Curticapean et al., STOC 2017]

$$
\begin{aligned}
& \operatorname{Sub}(\cdots \rightarrow \star)=
\end{aligned}
$$

Expectation complete embeddings on \mathcal{G}_{n}

Let

- \mathcal{G}_{n} be the set of graphs with up to n vertices,
- \mathcal{D} a distribution on \mathcal{G}_{n} with full support,
- a random pattern $F \sim \mathcal{D}$, and
- $\varphi_{n}(\cdot)=\operatorname{hom}\left(\mathcal{G}_{n}, \cdot\right)$

Expectation complete embeddings on \mathcal{G}_{n}

Let

- \mathcal{G}_{n} be the set of graphs with up to n vertices,
- \mathcal{D} a distribution on \mathcal{G}_{n} with full support,
- a random pattern $F \sim \mathcal{D}$, and
- $\varphi_{n}(\cdot)=\operatorname{hom}\left(\mathcal{G}_{n}, \cdot\right)$

Define

$$
\varphi_{F}(G)=\left(\varphi_{n}(G)\right)_{F}
$$

which samples the 'Fth' entry of φ_{n}

Expectation complete embeddings on \mathcal{G}_{n}

Let

- \mathcal{G}_{n} be the set of graphs with up to n vertices,
- \mathcal{D} a distribution on \mathcal{G}_{n} with full support,
- a random pattern $F \sim \mathcal{D}$, and
- $\varphi_{n}(\cdot)=\operatorname{hom}\left(\mathcal{G}_{n}, \cdot\right)$

Define
which samples the 'Fth' entry of φ_{n}

Expectation complete embeddings on \mathcal{G}_{n}

Let

- \mathcal{G}_{n} be the set of graphs with up to n vertices,
- \mathcal{D} a distribution on \mathcal{G}_{n} with full support,
- a random pattern $F \sim \mathcal{D}$, and
- $\varphi_{n}(\cdot)=\operatorname{hom}\left(\mathcal{G}_{n}, \cdot\right)$

Define

$$
\varphi_{F}(G)=\left(\varphi_{n}(G)\right)_{F}
$$

which samples the 'Fth' entry of φ_{n}
Theorem. φ_{F} is complete in expectation (on \mathcal{G}_{n})

Expectation complete embeddings on \mathcal{G} ?

Can we generalise to all finite graphs \mathcal{G} ?

Expectation complete embeddings on \mathcal{G} ?

Can we generalise to all finite graphs \mathcal{G} ?
Problem: φ_{∞} does not yield a norm / dot product

- e.g., $\left|\varphi_{\infty}(G)\right|^{2}=\left\langle\varphi_{\infty}(G), \varphi_{\infty}(G)\right\rangle=\infty$ in most cases

Expectation complete embeddings on \mathcal{G} ?

Can we generalise to all finite graphs \mathcal{G} ?
Problem: φ_{∞} does not yield a norm / dot product

- e.g., $\left|\varphi_{\infty}(G)\right|^{2}=\left\langle\varphi_{\infty}(G), \varphi_{\infty}(G)\right\rangle=\infty$ in most cases

Solution: only count patterns up to $|V(G)|$:
$\bar{\varphi}_{\infty}(G)=\left(\operatorname{hom}_{|V(G)|}(F, G)\right)_{F \in \mathcal{G}}$ where

$$
\operatorname{hom}_{|V(G)|}(F, G)= \begin{cases}\operatorname{hom}(F, G) & \text { if }|V(F)| \leq|V(G)|, \\ 0 & \text { if }|V(F)|>|V(G)|\end{cases}
$$

Expectation complete embeddings on \mathcal{G} ?

Can we generalise to all finite graphs \mathcal{G} ?
Problem: φ_{∞} does not yield a norm / dot product

- e.g., $\left|\varphi_{\infty}(G)\right|^{2}=\left\langle\varphi_{\infty}(G), \varphi_{\infty}(G)\right\rangle=\infty$ in most cases

Solution: only count patterns up to $|V(G)|$:
$\bar{\varphi}_{\infty}(G)=\left(\operatorname{hom}_{|V(G)|}(F, G)\right)_{F \in \mathcal{G}}$ where

$$
\operatorname{hom}_{|V(G)|}(F, G)= \begin{cases}\operatorname{hom}(F, G) & \text { if }|V(F)| \leq|V(G)|, \\ 0 & \text { if }|V(F)|>|V(G)|\end{cases}
$$

Theorem. $\bar{\varphi}_{\infty}(\cdot)$ is complete and $k_{\min }(G, H)=\left\langle\bar{\varphi}_{\infty}(G), \bar{\varphi}_{\infty}(H)\right\rangle$ is a complete graph kernel.

Computational complexity

Computing hom (F, G) is NP-hard in general.
If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

$$
\mathcal{O}\left(|V(F)||V(G)|^{\mathrm{tw}(F)+1}\right)
$$

Computational complexity

Computing hom (F, G) is NP-hard in general.
If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

$$
\mathcal{O}\left(|V(F)||V(G)|^{\mathrm{tw}(F)+1}\right)
$$

Idea: define distribution \mathcal{D} on \mathcal{G}_{n} s.t. runtime is polynomial in expectation!

Computational complexity

Computing hom (F, G) is NP-hard in general.
If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

$$
\mathcal{O}\left(|V(F)||V(G)|^{\operatorname{tw}(F)+1}\right)
$$

Idea: define distribution \mathcal{D} on $\mathcal{G}_{\text {n }}$ s.t. runtime is polynomial in expectation!
General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F^{\prime} with treewidth k
4. take a random subgraph F of F^{\prime}

Computational complexity

Computing hom (F, G) is NP-hard in general.
If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

$$
\mathcal{O}\left(|V(F)||V(G)|^{\operatorname{tw}(F)+1}\right)
$$

Idea: define distribution \mathcal{D} on \mathcal{G}_{n} s.t. runtime is polynomial in expectation!
General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F^{\prime} with treewidth k
4. take a random subgraph F of F^{\prime}
E.g., $k \sim$ Poisson (λ) with $\lambda \leq \frac{1+d \log n}{n}$ guarantees runtime $\mathcal{O}\left(|V(G)|^{d+2}\right)$

Practical embedding

Fix $\ell \in \mathbb{N}$, e.g., $\ell=30$
Sample F_{1}, \ldots, F_{ℓ} from \mathcal{D}, which guarantees completeness and poly-time in expectation

Practical embedding

Fix $\ell \in \mathbb{N}$, e.g., $\ell=30$
Sample F_{1}, \ldots, F_{ℓ} from \mathcal{D}, which guarantees completeness and poly-time in expectation

Construct

$$
\varphi^{\ell}(G)=\left(\begin{array}{c}
\operatorname{hom}\left(F_{1}, G\right) \\
\vdots \\
\operatorname{hom}\left(F_{\ell}, G\right)
\end{array}\right)
$$

Practical embedding

Fix $\ell \in \mathbb{N}$, e.g., $\ell=30$
Sample F_{1}, \ldots, F_{ℓ} from \mathcal{D}, which guarantees completeness and poly-time in expectation

Construct

$$
\varphi^{\ell}(G)=\left(\begin{array}{c}
\operatorname{hom}\left(F_{1}, G\right) \\
\vdots \\
\operatorname{hom}\left(F_{\ell}, G\right)
\end{array}\right)
$$

Theorem. φ^{ℓ} is complete in expectation and can be computed in polynomial time in expectation.

Experiments

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

- GHC-tree(6): all tree patterns up to size 6
- GHC-cycle(8): all cycle patterns up to size 8

Additionally:

- graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]
- GIN [Xu et al., ICLR 2019]

Experiments

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6)	89.28 ± 8.26	72.10 ± 2.62	48.60 ± 4.40	7.14 ± 0.00	10.00 ± 0.00
GHC-cycle(8)	87.81 ± 7.46	70.93 ± 4.54	47.41 ± 3.67	7.14 ± 0.00	100.00 ± 0.00
GNTK	89.46 ± 7.03	75.61 ± 3.98	51.91 ± 3.56	7.14 ± 0.00	10.00 ± 0.00
GIN	89.40 ± 5.60	70.70 ± 1.10	43.20 ± 2.00	7.14 ± 0.00	10.00 ± 0.00
ours (SVM)	87.94 ± 0.01	70.37 ± 0.01	47.34 ± 0.01	100.00 ± 0.00	37.33 ± 0.1
ours (MLP)	88.55 ± 0.01	70.81 ± 0.01	48.29 ± 0.01	40.524 ± 0.00	13.27 ± 0.01

Experiments

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6)	89.28 ± 8.26	72.10 ± 2.62	48.60 ± 4.40	7.14 ± 0.00	10.00 ± 0.00
GHC-cycle(8)	87.81 ± 7.46	70.93 ± 4.54	47.41 ± 3.67	7.14 ± 0.00	100.00 ± 0.00
GNTK	89.46 ± 7.03	75.61 ± 3.98	51.91 ± 3.56	7.14 ± 0.00	10.00 ± 0.00
GIN	89.40 ± 5.60	70.70 ± 1.10	43.20 ± 2.00	7.14 ± 0.00	10.00 ± 0.00
ours (SVM)	87.94 ± 0.01	70.37 ± 0.01	47.34 ± 0.01	100.00 ± 0.00	37.33 ± 0.1
ours (MLP)	88.55 ± 0.01	70.81 ± 0.01	48.29 ± 0.01	40.524 ± 0.00	13.27 ± 0.01

Experiments

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6)	89.28 ± 8.26	72.10 ± 2.62	48.60 ± 4.40	7.14 ± 0.00	10.00 ± 0.00
GHC-cycle(8)	87.81 ± 7.46	70.93 ± 4.54	47.41 ± 3.67	7.14 ± 0.00	100.00 ± 0.00
GNTK	89.46 ± 7.03	75.61 ± 3.98	51.91 ± 3.56	7.14 ± 0.00	10.00 ± 0.00
GIN	89.40 ± 5.60	70.70 ± 1.10	43.20 ± 2.00	7.14 ± 0.00	10.00 ± 0.00
ours (SVM)	87.94 ± 0.01	70.37 ± 0.01	47.34 ± 0.01	100.00 ± 0.00	37.33 ± 0.1
ours (MLP)	88.55 ± 0.01	70.81 ± 0.01	48.29 ± 0.01	40.524 ± 0.00	13.27 ± 0.01

Experiments

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6)	89.28 ± 8.26	72.10 ± 2.62	48.60 ± 4.40	7.14 ± 0.00	10.00 ± 0.00
GHC-cycle(8)	87.81 ± 7.46	70.93 ± 4.54	47.41 ± 3.67	7.14 ± 0.00	100.00 ± 0.00
GNTK	89.46 ± 7.03	75.61 ± 3.98	51.91 ± 3.56	7.14 ± 0.00	10.00 ± 0.00
GIN	89.40 ± 5.60	70.70 ± 1.10	43.20 ± 2.00	7.14 ± 0.00	10.00 ± 0.00
ours (SVM)	87.94 ± 0.01	70.37 ± 0.01	47.34 ± 0.01	100.00 ± 0.00	37.33 ± 0.1
ours (MLP)	88.55 ± 0.01	70.81 ± 0.01	48.29 ± 0.01	40.524 ± 0.00	13.27 ± 0.01

Research direction

Choose number of patterns ℓ and distribution \mathcal{D} adaptively:

- stop sampling when expressive enough
- pick \mathcal{D} based on the task or a given dataset
- frequent / interesting patterns

Research direction

Choose number of patterns ℓ and distribution \mathcal{D} adaptively:

- stop sampling when expressive enough
- pick \mathcal{D} based on the task or a given dataset
- frequent / interesting patterns

Going beyond expressiveness: similarity!

- if $G \approx H$ then $\varphi(G) \approx \varphi(H)$
- possible solution: cut distance (captures local and global properties)

Research direction

Choose number of patterns ℓ and distribution \mathcal{D} adaptively:

- stop sampling when expressive enough
- pick \mathcal{D} based on the task or a given dataset
- frequent / interesting patterns

Going beyond expressiveness: similarity!

- if $G \approx H$ then $\varphi(G) \approx \varphi(H)$
- possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings

Pointers

Talk mostly based on

- M.T.*, Pascal Welke*, and Thomas Gärtner [GLFrontiers@NeurIPS 2022]

Further related work

- Martin Grohe. "word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data." [PoDS 2022]
- Pascal Kühner. Master Thesis: "Graph Embeddings Based on Homomorphism Counts." [2021]
- Pablo Barceló, et al. "Graph Neural Networks with Local Graph Parameters." [NeurIPS 2021]
- Paul Beaujean et al., "Graph Homomorphism Features: Why Not Sample?" [GEM@ECMLPKDD 2021]
- Hoang Nguyen and Takanori Maehara. "Graph homomorphism convolution." [ICML 2020]
- Lingfei Wu, et al. "Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding." [KDD 2019]
- Till Schulz, et al. "Mining Tree Patterns with Partially Injective Homomorphisms" [ECMLPKDD 2018]

