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Complete graph embeddings

Let G be the set of all (finite) graphs, V be a vector space (e.g., Rd)

A graph embedding ϕ ∶ G → V is permutation-invariant if

• For all isomorphic graphs G ≃ H: ϕ(G) = ϕ(H)

A permutation-invariant graph embedding ϕ is complete if

• for all non-isomorphic graphs G /≃ H ∶ ϕ(G) ≠ ϕ(H)
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Complete graph embeddings

Originated from complete graph kernels [Gärtner et al., COLT 2003]

• let H be a dot product space1

• graph kernel kϕ(G,H) = ⟨ϕ(G), ϕ(H)⟩H with ϕ ∶ G → H
• kϕ is complete if ϕ is complete

Maximilian Thiessen | 1formally a Hilbert space 2



Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

• not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, …
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What if we keep completeness …

… but just in expectation
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Expectation complete graph embeddings

Let ϕX ∶ G → V depend on a random variable X drawn from a distr. D over a set X 1

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(⋅)] = ∑
t∈X

Pr(X = t)ϕt(⋅)

is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (ϕX1(G), ϕX2(G), ϕX3(G), . . . ) arbitrarily expressive

Maximilian Thiessen | 1here assumed to be countable, but any set with a probability distribution would do 5
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What if we keep completeness …
… but just in expectation

… in polynomial time
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Graph homomorphisms and Lovász’ theorem

Let F,G be graphs. A map ϕ ∶ V(F) → V(G) is a graph homomorphism if

• ϕ preserves edges: {v,w} ∈ E(F) implies {ϕ(v), ϕ(w)} ∈ E(G)

We denote by hom(F,G) the number of homomorphisms from F to G

Maximilian Thiessen 7



Graph homomorphisms and Lovász’ theorem

Let
ϕ∞(G) = hom(G,G) = ((hom(F,G))F∈G

denote the countable vector of homomorphism counts indexed by F ∈ G

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff ϕ∞(G) = ϕ∞(H)

⇒ ϕ∞(⋅) is complete!

Our goal: sample from ϕ∞ to devise an efficiently computable and expectation
complete embedding
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Why graph homomorphisms

They capture important graph properties:
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Why graph homomorphisms

They capture aspects important for learning:

Universality: Any permutation-invariant function f ∶ G → Rd can be approximated
arbitrarily well by a polynomial of {hom(F,G) ∣ F ∈ G} [NT and Maehara, 2020]
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Why graph homomorphisms

They can be used for subgraph counting [Curticapean et al., STOC 2017]

Maximilian Thiessen 11



Expectation complete embeddings on Gn

Let

• Gn be the set of graphs with up to n vertices,
• D a distribution on Gn with full support,
• a random pattern F ∼ D, and
• ϕn(⋅) = hom(Gn, ⋅)

Define
ϕF(G) = (ϕn(G))F

which samples the ‘Fth’ entry of ϕn

Theorem. ϕF is complete in expectation (on Gn)
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Expectation complete embeddings on G?

Can we generalise to all finite graphs G?

Problem: ϕ∞ does not yield a norm / dot product

• e.g., ∣ϕ∞(G)∣2 = ⟨ϕ∞(G), ϕ∞(G)⟩ = ∞ in most cases

Solution: only count patterns up to ∣V(G)∣:

ϕ∞(G) = (hom∣V(G)∣(F,G))F∈G where

hom∣V(G)∣(F,G) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hom(F,G) if ∣V(F)∣ ≤ ∣V(G)∣ ,
0 if ∣V(F)∣ > ∣V(G)∣ .

Theorem. ϕ∞(⋅) is complete and kmin(G,H) = ⟨ϕ∞(G), ϕ∞(H)⟩ is a complete
graph kernel.
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Computational complexity

Computing hom(F,G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O (∣V(F)∣∣V(G)∣tw(F)+1)

Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F′ with treewidth k
4. take a random subgraph F of F′

E.g., k ∼ Poisson(λ) with λ ≤
1+d log n

n guarantees runtime O (∣V(G)∣d+2)

Maximilian Thiessen 14
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Practical embedding

Fix ` ∈ N, e.g., ` = 30

Sample F1, . . . , F` from D, which guarantees completeness and poly-time in
expectation

Construct

ϕ
`(G) =

⎛
⎜⎜⎜⎜
⎝

hom(F1,G)
⋮

hom(F`,G)

⎞
⎟⎟⎟⎟
⎠

Theorem. ϕ` is complete in expectation and can be computed in polynomial time
in expectation.
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Experiments

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

• GHC-tree(6): all tree patterns up to size 6
• GHC-cycle(8): all cycle patterns up to size 8

Additionally:

• graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]
• GIN [Xu et al., ICLR 2019]

Maximilian Thiessen 16



Experiments

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 13.27± 0.01
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Research direction

Choose number of patterns ` and distribution D adaptively:

• stop sampling when expressive enough
• pick D based on the task or a given dataset
• frequent / interesting patterns

Going beyond expressiveness: similarity!

• if G ≈ H then ϕ(G) ≈ ϕ(H)
• possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings

Maximilian Thiessen 18
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Pointers

Talk mostly based on

• M.T.*, Pascal Welke*, and Thomas Gärtner [GLFrontiers@NeurIPS 2022]

Further related work

• Martin Grohe. “word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of
structured data.” [PoDS 2022]

• Pascal Kühner. Master Thesis: “Graph Embeddings Based on Homomorphism Counts.” [2021]

• Pablo Barceló, et al. “Graph Neural Networks with Local Graph Parameters.” [NeurIPS 2021]

• Paul Beaujean et al., “Graph Homomorphism Features: Why Not Sample?” [GEM@ECMLPKDD 2021]

• Hoang Nguyen and Takanori Maehara. ”Graph homomorphism convolution.” [ICML 2020]

• Lingfei Wu, et al. “Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding
to Graph Embedding.” [KDD 2019]

• Till Schulz, et al. “Mining Tree Patterns with Partially Injective Homomorphisms” [ECMLPKDD 2018]
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