## Learning on Streaming Graphs

M. Perini, G. Ramponi, P. Carbone, V. Kalavri

- Anti-money laundering prevents criminals from moving illicit funds through the financial system.
- Machine Learning to detect suspicious transactions.
- Challenges:
  - Massive graph
  - New interactions
  - Timely access to updated predictions.









## Overall system



#### Graph Neural Network

- Inductive graph neural networks maps vertices to labels
- Each node is represented by the aggregation of its neighborhood.



## Concept drift

The function learned might evolve with the evolution of the graph.



#### No rehearsal

- New data interferes with the knowledge gained previously
- Training methods assume samples are i.i.d.
- An online training algorithm (SGD) might converge towards a bad solution

## Continual learning

- Catastrophic forgetting: new data interferes with the knowledge gained previously.
- Previous online learning approaches involve specific neural network architecture or regularization
- They perform worse than a baseline that trains on few random samples.

#### RBR: Random-based Rehearsal

- Reuse past data to update the model in the new snapshot.
- Works if sampling at random selects a representative set of the vertices
- Trains more old samples

## PBR: Priority-based Rehearsal

- Idea: learn more from some samples ("support vectors") than from others
- We can measure how unexpected is a vertex
  - How much the model can't predict it
- "Important" ones are drawn more frequently
- New vertices get maximum priority
- Updates error during gradient updates (log(V)) with segment tree)

## PBR: Priority-based Rehearsal



# Experiments

#### Evaluation

- Sequence of temporal snapshots
- Default strategy: new vertex added to test or train set at random.
- Temporal strategy: test set using vertices of next snapshots

#### Baselines

- Offline: Train over the full graph with multiple epochs
- No-Rehearsal: Train over the new vertices.
- ContinualGNN: replay-based method

#### Reddit

Dynamic edge addition, social network



#### Reddit



#### Arxiv

• Dynamic vertex addition, publication network



#### Arxiv



#### ContinualGNN

#### Reddit - F1



#### ContinualGNN

#### Reddit - Training time



#### Inference

#### Scalable batch systems



compute  $h^0_{*,proj}$  communicate  $h^0_{*,proj}$  compute  $h^1_{*,proj}$  communicate  $h^1_{*,proj}$ 

#### Problems

- Examples of Load-compute-store systems: Pregel, Graphx (Spark), Graphlab...
- Same execution strategy, same problems:
  - The straggler task determines the runtime
  - New mutations are not processed while computation is ongoing
  - To much re-computation for nothing

## Inference Incremental algorithm



## Asynchronous Inference with Flink



# Thanks