Learning on Streaming Graphs
M. Perini, G. Ramponi, P. Carbone, V. Kalavri
massimo.perini@ed.ac.uk
Example

- Anti-money laundering prevents criminals from moving illicit funds through the financial system.
- Machine Learning to detect suspicious transactions.
- Challenges:
 - Massive graph
 - New interactions
 - Timely access to updated predictions.
Example
Example
Example
Example
Overall system
Graph Neural Network

- Inductive graph neural networks maps vertices to labels
- Each node is represented by the aggregation of its neighborhood.
Concept drift

- The function learned might evolve with the evolution of the graph.
No rehearsal

- New data interferes with the knowledge gained previously
- Training methods assume samples are i.i.d.
- An online training algorithm (SGD) might converge towards a bad solution
Continual learning

• Catastrophic forgetting: new data interferes with the knowledge gained previously.
• Previous online learning approaches involve specific neural network architecture or regularization
• They perform worse than a baseline that trains on few random samples.
RBR: Random-based Rehearsal

- Reuse past data to update the model in the new snapshot.
- Works if sampling at random selects a representative set of the vertices
- Trains more old samples
PBR: Priority-based Rehearsal

- Idea: learn more from some samples ("support vectors") than from others
- We can measure how unexpected is a vertex
 - How much the model can’t predict it
- "Important" ones are drawn more frequently
- New vertices get maximum priority
- Updates error during gradient updates ($\log(|V|)$ with segment tree)
PBR: Priority-based Rehearsal
Experiments
Evaluation

• Sequence of temporal snapshots
• Default strategy: new vertex added to test or train set at random.
• Temporal strategy: test set using vertices of next snapshots
Baselines

- Offline: Train over the full graph with multiple epochs
- No-Rehearsal: Train over the new vertices.
- ContinualGNN: replay-based method
Reddit

• Dynamic edge addition, social network
Reddit

Default split

Temporal split

f1 macro

snapshot

algorithm RBR PBR no rehearsal offline

0 25 50 75 100 125
Dynamic vertex addition, publication network
ContinualGNN
Reddit - F1

Default split

Temporal split

algorithm: RBR, PBR, ContinualGNN
ContinualGNN
Reddit - Training time
Inference
Scalable batch systems

compute $h_{*,\text{proj}}^0$ communicate $h_{*,\text{proj}}^0$ compute $h_*^1, h_{*,\text{proj}}^1$ communicate $h_{*,\text{proj}}^1$
Problems

- Examples of Load-compute-store systems: Pregel, Graphx (Spark), Graphlab…

- Same execution strategy, same problems:
 - The straggler task determines the runtime
 - New mutations are not processed while computation is ongoing
 - Too much re-computation for nothing
Inference
Incremental algorithm

Diagram showing the process of inference with nodes A, B, C, and D connected in different ways.
Asynchronous Inference with Flink

Input Stream

Loop

Window operator

Broadcasted model

Predictions
Thanks