Hot Topics in Graph Neural Networks

Graphs in Artificial Intelligence and Neural Networks

Josephine Thomas, Silvia Beddar-Wiesing, Clara Holzhüter, Alice Moallemy-Oureh

25th of October 2022

Bundesministerium für Bildung und Forschung

- The Research Center for Information System Design (ITeG) at the University of Kassel focuses on socially responsible IT design.
- We promote responsible, socially sustainable digitisation through interdisciplinary research.
- 12 research groups from different disciplines (computer science, IT and privacy law, information systems, psychology, sociology, human-machine systems engineering).

Main areas of mutual research

- Methods of socio-technical IT Design to increase digital self-determination and souvereignty
- Privacy and the dynamics of the information society
- AI and Hybrid Intelligence and their embedding in the social system

The Team

Josephine Thomas

Silvia Beddar-Wiesing

Alice Moallemy-Oureh

Eric Alsmann Rüdiger Nather Till-Mattis Nebel Björn-André Schröder

Clara Holzhüter

Bernhard Sick

Christoph Scholz

Workshop Agenda

Time	Speaker	Торіс	
10:00 - 11:15	GAIN	Expressivity and Dynamic of GNNs in theory and	
11:20 - 12:05	Petar Veličković	applications to the power grid Algorithmically-aligned GNNs	
		Lunch Break	
13:15 - 13:40	Fabian Jogl	Do we need to Improve Message Passing?	
13:45 - 14:10	Maximilian	Expectation Complete Graph Representations using	
	Thiessen	Graph Homomorphisms	
14:15 - 15:00	Massimo Perini	Graph Streams	
		Coffee Break	
16:00 - 16:45	Antonio Longa	Explaining the explainers in GNNs: a comparative	e s
16:50 - 17:35	Hannes Stärk	Geometric ML for Molecules	

Content

1 Graph Neural Networks for different Graph Types: A Survey

- 2 The Modeling Power of different Graph Types
- 3 WL goes Dynamic: Expressivity of GNNs for Attributed and Dynamic Graphs
- 4 Extension of the WL Hierarchy by WL Tests for Arbitrary Graphs
- 5 Graph Neural Networks for Power Grids
- 6 Ongoing Research

Graph Neural Networks for different Graph Types: A Survey

Josephine M. Thomas^{*}, Alice Moallemy-Oureh^{*}, Silvia Beddar-Wiesing^{*}, Clara Holzhüter^{*}: *Graph Neural Networks Designed for Different Graph Types: A Survey*, https://arxiv.org/abs/2204.03080 Graph Neural Networks for different Graph Types: A Survey

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

GNNs extend Neural Networks to work on graphs

Graph Neural Networks for different Graph Types: A Survey

- GNNs extend Neural Networks to work on graphs
- The architecture of GNNs can be different depending on the properties of a graph

- GNNs extend Neural Networks to work on graphs
- The architecture of GNNs can be different depending on the properties of a graph
- \blacksquare Graph properties yield graph types \rightarrow Which graph types are there?

- GNNs extend Neural Networks to work on graphs
- The architecture of GNNs can be different depending on the properties of a graph
- \blacksquare Graph properties yield graph types \rightarrow Which graph types are there?
- Which graph types can be handled by GNN models?

- static undirected graph
- static structural properties
- semantic graph properties
- dynamic structural properties

- static undirected graph
- static structural properties
- semantic graph properties
- dynamic structural properties

directed hypergraph

- static undirected graph
- static structural properties
- semantic graph properties
- dynamic structural properties

complete graph

- static undirected graph
- static structural properties
- semantic graph properties
- dynamic structural properties

strictly shrinking graph

GNNs for different Graph Types: The representation of dynamic graphs

GNNs for different Graph Types: The representation of dynamic graphs

 discrete-time dynamic

GNNs for different Graph Types: The representation of dynamic graphs

Much work has been done on GNN models for static graphs

Much work has been done on GNN models for static graphs Exception: Multigraphs

- Much work has been done on GNN models for static graphs
 Exception: Multigraphs
- For hypergraphs few models exist for each graph type

- Much work has been done on GNN models for static graphs
 Exception: Multigraphs
- For hypergraphs few models exist for each graph type
- For graphs and hypergraphs in discrete-time models exist similar to the static case

- Much work has been done on GNN models for static graphs
 Exception: Multigraphs
- For hypergraphs few models exist for each graph type
- For graphs and hypergraphs in discrete-time models exist similar to the static case
- Many gaps in models for graphs in continuous-time

- Much work has been done on GNN models for static graphs
 Exception: Multigraphs
- For hypergraphs few models exist for each graph type
- For graphs and hypergraphs in discrete-time models exist similar to the static case
- Many gaps in models for graphs in continuous-time
 - Deletion of nodes/edges

- Much work has been done on GNN models for static graphs
 Exception: Multigraphs
- For hypergraphs few models exist for each graph type
- For graphs and hypergraphs in discrete-time models exist similar to the static case
- Many gaps in models for graphs in continuous-time
 - Deletion of nodes/edges
 - Dynamic attributes, especially if data-type is complex

Models for combined graph types and semantic graph properties are developed application specific

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs
 - r-regular graphs

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs
 - r-regular graphs
- Many gaps in models for hypergraphs in continuous-time

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs
 - r-regular graphs
- Many gaps in models for hypergraphs in continuous-time
 - Node/edge-attributes

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs
 - r-regular graphs
- Many gaps in models for hypergraphs in continuous-time
 - Node/edge-attributes
 - Node/edge-heterogenity

- Models for combined graph types and semantic graph properties are developed application specific
- Some semantic graph properties are not explicitly handeled
 - unconnected graphs
 - acyclic graphs
 - r-regular graphs
- Many gaps in models for hypergraphs in continuous-time
 - Node/edge-attributes
 - Node/edge-heterogenity
 - Multiple nodes/eges

The Modeling Power of different Graph Types

Josephine M. Thomas^{*}, Silvia Beddar-Wiesing^{*}, Alice Moallemy-Oureh^{*}, Rüdiger Nather: *Graph type expressivity and transformations*, https://arxiv.org/abs/2109.10708

Expressivity relation

- Expressivity relation
- Examples of expressivity relations

- Expressivity relation
- Examples of expressivity relations
- All attributed graph types can be transformed into a SAUHG

- Expressivity relation
- Examples of expressivity relations
- All attributed graph types can be transformed into a SAUHG
- All attributed graph types are equally expressive

A graph type \mathcal{G}_2 is **at least as expressive** as a graph type \mathcal{G}_1 , if and only if \mathcal{G}_2 encodes at least as many graph properties as \mathcal{G}_1 denoted as $\mathcal{G}_1 \preccurlyeq \mathcal{G}_2$. In case both types encode the same graph properties it is denoted as $\mathcal{G}_1 \approx \mathcal{G}_2$.

The Modeling Power of different Graph Types: Expres. relation examples

Transformation directed to undirected graph:

Storing the directions and multiple attributes in the new attributes.

The Modeling Power of different Graph Types: Expres. relation examples

Transformation dynamic to static graph:

Cummulating the structural information in one entire graph and storing the corresponding attribute time series as the new attributes.

The Modeling Power of different Graph Types: Expres. relation examples

Transformation dynamic to static graph:

Cummulating the structural information in one entire graph and storing the corresponding attribute time series as the new attributes.

The Modeling Power of different Graph Types: Results

All attributed graph types are equally expressive.

All attributed graph types are equally expressive.

 \rightarrow We can transform graph data to be able to use an arbitrary GNN.

All attributed graph types are equally expressive.

 \rightarrow We can transform graph data to be able to use an arbitrary GNN. \rightarrow We are free to choose a graph type that models our problem best.

Weisfeiler–Lehmann goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs

Which graphs/nodes can a GNN distinguish?

Scarselli et. al (2009) GNNs cannot distinguish nodes having the same unfolding trees. **Xu et. al (2018)** GNNs are **as powerful as** the Weisfeiler-Lehman graph isomorphism test (1-WL, 1968).

D'Inverno et. al (2021) The WL-test and the unfolding trees induce the **same equivalence** relationship on graphs.

Which graphs/nodes can a GNN distinguish?

Scarselli et. al (2009) GNNs cannot distinguish nodes having the same unfolding trees. **Xu et. al (2018)** GNNs are **as powerful as** the Weisfeiler-Lehman graph isomorphism test (1-WL, 1968).

D'Inverno et. al (2021) The WL-test and the unfolding trees induce the **same equivalence** relationship on graphs.

 \rightarrow static node-attributed graphs only!

Which functions can a GNN approximate?

D'Inverno et. al (2021)

Message Passing GNNs can approximate in probability any measurable function that respects the unfolding equivalence. Azizian et. al (2020) Message Passing GNNs are dense in continuous functions on graphs modulo 1-WL.

Which functions can a GNN approximate?

D'Inverno et. al (2021)

Message Passing GNNs can approximate in probability any measurable function that respects the unfolding equivalence. Azizian et. al (2020) Message Passing GNNs are dense in continuous functions on graphs modulo 1-WL.

 \rightarrow static node-attributed graphs only!

Contributions

¹Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

Contributions

- **Extension** of WL-Tests and unfolding trees to (edge-)attributes and dynamics
- Proof of Extended Approximation Theorems: GNNs can approximate to any precision and probability any measurable function on attributed and dynamic graphs

Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

(Thank you Nils Kriege for the wonderful illustration!)

Recap: WL-Test and Unfolding Trees Recap: WL-Test and Unfolding Trees

Unfolding Trees

Unfolding Trees of both blue nodes

WL Coloring for Attributed Graphs

Unfolding Trees for Attributed Graphs

Unfolding Trees of both blue nodes

WL Coloring for Dynamic Graphs

Unfolding Trees for Dynamic Graphs

Weisfeiler-Lehman goes dynamic Equivalence of WL and UT

Proposition

For all nodes u, v holds:

1 in the attributed case:

 $u \sim_{AWL} v \Leftrightarrow u \sim_{AUT} v$.

2 in the dynamic case:

 $u \sim_{DWL} v \Leftrightarrow u \sim_{DUT} v.$

Weisfeiler-Lehman goes dynamic Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

Weisfeiler-Lehman goes dynamic

Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

For a SAUHG $G = (\mathcal{V}, \mathcal{E}, \alpha, \omega)$, let $v \in \mathcal{V}$. The propagation scheme of the SGNN for one iteration $k \in [K]$ is defined as

$$\mathbf{h}_{v}^{k} = \text{COMBINE}\left(\underbrace{\mathbf{h}_{v}^{k-1}}_{\text{history}}, \underbrace{\text{AGGREGATE}\left(\{\mathbf{h}_{u}^{k-1}\}_{u \in \mathcal{N}(v)}, \{\omega(\{u, v\})\}_{u \in \mathcal{N}(v)}\right)}_{\text{neighborhood aggregation}}\right).$$

Weisfeiler-Lehman goes dynamic

Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

$$\boldsymbol{h}_{v}^{k} = \text{COMBINE}\left(\underbrace{\boldsymbol{h}_{v}^{k-1}}_{\text{history}}, \underbrace{\text{AGGREGATE}\left(\{\boldsymbol{h}_{u}^{k-1}\}_{u \in \mathcal{N}(v)}, \{\omega(\{u,v\})\}_{u \in \mathcal{N}(v)}\right)}_{\text{neighborhood aggregation}}\right).$$

For a discrete dynamic graph $G' = (G_t)_{t \in I}$, let $v \in \mathcal{V}_t$. The **propagation scheme** of the MP-DGNN for one iteration $k \in [K]$ at timestamp $t \in [T]$ is defined as

$$h_{v}^{k}(t) = \text{COMBINE}_{t}^{(k)} \left(\underbrace{h_{v}^{k-1}(t)}_{\text{history}}, \underbrace{\text{AGGREGATE}_{t}^{k} \left(\{h_{u}^{k-1}(t)\}_{u \in \mathcal{N}_{t}(v)}, \{\omega_{\{u,v\}}(t)\}_{u \in \mathcal{N}_{t}(v)} \right)}_{\text{temporal neighborhood aggregation}} \right)$$

Weisfeiler-Lehman goes dynamic Universal Approximation of SGNN and MP-DGNN

Weisfeiler-Lehman goes dynamic Universal Approximation of SGNN and MP-DGNN

For

- Domain of SAUHGs \mathcal{G} and $r = \max(G)$:
 - $r = \max_{g \in \mathcal{G}} diam(G);$
- any measurable function *f* preserving ~_{AUT};
- any norm || · || on ℝ and probability measure *P* on *G*;
- $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon > 0$, probability $\lambda \in (0, 1)$.

Weisfeiler-Lehman goes dynamic Universal Approximation of SGNN and MP-DGNN

For

■ Domain of SAUHGs G and $r = \max(G)$:

$$= \max_{g \in \mathcal{G}} \max$$

- any measurable function *f* preserving ~_{AUT};
- any norm || · || on ℝ and probability measure *P* on *G*;
- $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon > 0$, probability $\lambda \in (0, 1)$.

There exists an SGNN s.t. the function φ realized by the SGNN, computed after r + 1 steps for all $G \in \mathcal{G}$ and $v \in G$, satisfies:

 $P(\|f(G, v) - \varphi(G, v)\| \le \epsilon) \ge 1 - \lambda.$

Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN

For

- Domain of SAUHGs \mathcal{G} and $r = \max_{g \in \mathcal{G}} diam(G);$
- any measurable function *f* preserving ~_{*AUT*};
- any norm || · || on ℝ and probability measure *P* on *G*;
- $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon > 0$, probability $\lambda \in (0, 1)$.

There exists an SGNN s.t. the function φ realized by the SGNN, computed after r + 1 steps for all $G \in \mathcal{G}$ and $v \in G$, satisfies:

$$P\left(\|f(\mathsf{G},\mathsf{v})-arphi(\mathsf{G},\mathsf{v})\|\leq\epsilon
ight)\geq 1-\lambda.$$

For

- Domain of discrete dyn. graphs $G' = (G_t)_{t \in I} \in \mathcal{G}'$ and $r_t = \max_{G_t \in \mathcal{G}'} diam(G_t) \forall t \in I;$
- any measurable dynamic system dyn(t, G', v) preserving ~_{DUT};
- any norm || · || on ℝ and probability measure *P* on *G*;
- $\quad \quad \bullet,\lambda\in\mathbb{R},\,\epsilon>\mathsf{0},\;\lambda\in(\mathsf{0},1).$

There exists an MP-DGNN s.t the function ψ realized by the MP-DGNN, computed after $r_t + 1$ steps satisfies:

 $P\left(\left\| dyn(t,G',v) - \psi(G',v) \right\| \leq \epsilon \right) \geq 1 - \lambda.$

Weisfeiler-Lehman goes dynamic² Conclusion

²Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

Weisfeiler-Lehman goes dynamic² Conclusion

- There exist SGNNs and MP-DGNNs to approximate any measurable function on attributed and dynamic graphs to any precision and probability.
- The **proof** is based on attributed and dynamic WL- and UT- equivalence.

²Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary Graphs

S. Beddar-Wiesing, G.A. D'Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F: Scarselli *On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary Graphs*, 18th International Workshop On Mining and Learning with Graphs, 2022, https://openreview.net/forum?id=Qt6GrgDz2y5

Higher dimensional WL test

Extensions to *k*-AWL/DWL are analogously.

The WL Hierachy

$$1-\mathsf{WL} = 2-\mathsf{WL} \subsetneq 3-\mathsf{WL} \subsetneq \ldots \subsetneq k - \mathsf{WL} \subsetneq \ldots \subsetneq \mathsf{GI}$$

The WL Hierachy

$$1-\mathsf{WL} = 2-\mathsf{WL} \subsetneq 3-\mathsf{WL} \subsetneq \ldots \subsetneq k - \mathsf{WL} \subsetneq \ldots \subsetneq \mathsf{GI}$$

How do the *k*-AWL and *k*-DWL fit there?

Some trivial observations are:

- $\blacksquare 1-WL \subsetneq 1-AWL$
- $\blacksquare \Rightarrow k\text{-WL} \subsetneq k\text{-AWL}$
- \blacksquare 2-WL \subsetneq 1-AWL
- k-AWL/DWL \subseteq (k + 1)-AWL/DWL
- k-AWL = k-DWL

Some trivial observations are:

- $\blacksquare 1-WL \subsetneq 1-AWL$
- $\blacksquare \Rightarrow k\text{-WL} \subsetneq k\text{-AWL}$
- \blacksquare 2-WL \subsetneq 1-AWL

•
$$k$$
-AWL/DWL \subseteq (k + 1)-AWL/DWL

• k-AWL = k-DWL

Nevertheless, the hierarchy can just induce a partial order:

- 3-WL ⊈ 1-AWL
- 3-WL ⊉ 1-AWL
- **.**..

 $3\text{-WL} \nsubseteq 1\text{-AWL}$

3-WL ⊈ **1-AWL**

3-WL ⊉ **1-AWL**

Extended WL Hierarchy induces a lattice.

- Extended WL Hierarchy induces a lattice.
- Def.: A lattice is (L, ∧, ∨), with set L and associative and commutative operations ∧, ∨ fulfilling the absorption and the idempotent laws.

- Extended WL Hierarchy induces a lattice.
- Def.: A lattice is (L, ∧, ∨), with set L and associative and commutative operations ∧, ∨ fulfilling the absorption and the idempotent laws.
- Lattice is complete, infinite, bounded, distributive and modular.

Why are these results so great?

■ We could use lattice theory to solve open questions as e.g.:

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
 - What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
 - What are **minimal requirements** to a subset of WL tests such that it remains a **lattice**, or that we obtain a **semilattice**?

Further future work

The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
 - What are **minimal requirements** to a subset of WL tests such that it remains a **lattice**, or that we obtain a **semilattice**?

Further future work

- The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.
- There are more powerful extensions (without this property).

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
 - What are **minimal requirements** to a subset of WL tests such that it remains a **lattice**, or that we obtain a **semilattice**?

Further future work

- The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.
- There are more powerful extensions (without this property).
- $\blacksquare
 ightarrow$ How would these change the WL lattice?

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:
 - How big is the **difference** $|\mathcal{P}_B| |\mathcal{P}_A|$ of the partitions $\mathcal{P}_A, \mathcal{P}_B$ if $A \leq B$?
 - Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
 - What are **minimal requirements** to a subset of WL tests such that it remains a **lattice**, or that we obtain a **semilattice**?

Further future work

- The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.
- There are more powerful extensions (without this property).
- $\blacksquare \rightarrow$ How would these change the WL lattice?

Since this is future work, feel free to share your expertise!

The Importance of the Power Grid

Reliability and safety of the power grid is essential

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions
- Fluctuations caused by renewable energies require a high flexiblility

GAI

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions
- Fluctuations caused by renewable energies require a high flexiblility
- Efficient power grid Operation is required for a successful decarbonization

Power Grid Operation

Massive amount of regulatory actions available for the network operators

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch,

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch, topological operations

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch, topological operations
- Topology changes are typically low cost actions

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch, topological operations
- Topology changes are typically low cost actions
- Simulating every action is not feasible

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch, topological operations
- Topology changes are typically low cost actions
- Simulating every action is not feasible
- Topology changes are underexploited options

- Massive amount of regulatory actions available for the network operators
- Different actions: redispatch, topological operations
- Topology changes are typically low cost actions
- Simulating every action is not feasible
- Topology changes are underexploited options
- $\Rightarrow \text{Deep Learning Models}$

GNNs for Electricity Networks

■ The power grid has an inherent graph structure

- The power grid has an inherent graph structure
- Its components are strongly correlated

- The power grid has an inherent graph structure
- Its components are strongly correlated
- GNNs can leverage the power grid's topology to generate a graph output

- The power grid has an inherent graph structure
- Its components are strongly correlated
- GNNs can leverage the power grid's topology to generate a graph output

Goal: Design a GNN to predict a suitable topology

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

 Change topology according to prediction

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

 Change topology according to prediction

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

- Output: Encoded Graph indicating the splitting candidates
- Change topology according to prediction

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

Output: Encoded Graph indicating the splitting candidates

 Change topology according to prediction

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

- Output: Encoded Graph indicating the splitting candidates
- Change topology according to prediction

Approach

- Input: power grid at a specific time stamp
- Construct Graph
- Apply GNN

- Gain
- Output: Encoded Graph indicating the splitting candidates
- Change topology according to prediction

 \rightarrow Node Classifcation Task to identify the candidates for node splitting

GAIN

Hardly any approaches for this specific use case

- Hardly any approaches for this specific use case
- Apply dedicated GNN architecture

- Hardly any approaches for this specific use case
- Apply dedicated GNN architecture
- Include historical data

- Hardly any approaches for this specific use case
- Apply dedicated GNN architecture
- Include historical data
 - Time Series Embedding

- Hardly any approaches for this specific use case
- Apply dedicated GNN architecture
- Include historical data
 - Time Series Embedding
 - Dynamic GNN

Ultimate Goal

■ Combine the GNN Approach with a Reinforcement Learning Algorithm

³Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: *Learning to run a power network challenge for training topology controllers*, Electric Power Systems Research vol. 189, Elsevier

NeurIPS Challenge "L2RPN"³

³ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: *Learning to run a power network challenge for training topology controllers*, Electric Power Systems Research vol. 189, Elsevier

- NeurIPS Challenge "L2RPN"³
- Hardly any Agents using GNNs

³Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: *Learning to run a power network challenge for training topology controllers*, Electric Power Systems Research vol. 189, Elsevier

- NeurIPS Challenge "L2RPN"³
- Hardly any Agents using GNNs
- Influence of GNNs has not been fully investigated

³Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: *Learning to run a power network challenge for training topology controllers*, Electric Power Systems Research vol. 189, Elsevier

- NeurIPS Challenge "L2RPN"³
- Hardly any Agents using GNNs
- Influence of GNNs has not been fully investigated
- GNNs for Imitation Learning as benchmark

³Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: *Learning to run a power network challenge for training topology controllers*, Electric Power Systems Research vol. 189, Elsevier

GNN Pipeline with the Gri2Op⁴Virtual Power Grid

⁴B. Donnot, Grid2op- A testbed platform to model sequential decision making in power systems. https://GitHub.com/rte-france/grid2op

Ongoing Research

- Local Activity Encoding for Dynamic Graph Pooling in Structure Dynamic Graphs
- Continuous-Time Generative GNN for Attributed Dynamic Graphs
- FDGNN: Fully Dynamic GNN

Local Activity Encoding for Dynamic Graph Pooling in Structure Dynamic Graphs $^{\rm 5}$

- graph compression algorithm for processing structural dynamic graphs
 Heatmap Potential
 includes local activity
 - encoding with subsequent pooling
 - generates important graph sequence of equal sizes in O(T)

^DBeddar-Wiesing: Using local activity encoding for dynamic graph pooling in stuctural-dynamic graphs, SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing

Continuous-Time Generative GNN for Attributed Dynamic Graphs⁶

Let $G = (g_{t_0}, \mathbb{E})$ be a dynamic graph in continuous-time. The approach is determined by:

- 1 Discretization of G
- 2 Embedding via vGAE
- Interpret timestamps as another embedding space scaling axis and fit Gaussian regression functions

- emb. coord. of node n at time t_i
- emb. forecast coord. of node n at time t_{i+1}
- \rightarrow polynomial regression function $f_n(t)$

^bMoallemy-Oureh: Continuous-time generative graph neural network for attributed dynamic graphs, SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, https://doi.org/10.1145/3477314.3508018

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: *FDGNN: Fully Dynamic Graph Neural Network*, arXiv:2206.03469

⁷ Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

Contact

Thank you for your attention! Questions?

GAIN gain@uni-kassel.de Josephine Thomas jthomas@uni-kassel.de Silvia Beddar-Wiesing s.beddarwiesing@uni-kassel.de Alice Moallemy-Oureh amoallemy@uni-kassel.de Clara Holzhüter clara.holzhueter@uni-kassel.de clara.juliane.holzhueter@iee.fraunhofer.de

gain-group.de