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m The Research Center for Information System Design (ITeG) at the University
of Kassel focuses on socially responsible IT design.

m We promote responsible, socially sustainable digitisation through
interdisciplinary research.

m 12 research groups from different disciplines (computer science, IT and

privacy law, information systems, psychology, sociology, human-machine
systems engineering).

Main areas of mutual research

m Methods of socio-technical IT Design to increase digital self-determination
and souvereignty

m Privacy and the dynamics of the information society
m Al and Hybrid Intelligence and their embedding in the social system
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Graph Neural Networks for different Graph
Types: A Survey

Josephine M. Thomas™, Alice Moallemy-Oureh*, Silvia Beddar-Wiesing*, Clara Holzhiter*: Graph
Neural Networks Designed for Different Graph Types: A Survey,
https://arxiv.org/abs/220 .0 080
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Graph Neural Networks for different Graph Types: A Survey %
Gain

What can GNNs achieve nhowadays and where is work to be done?
m GNNs extend Neural Networks to work on graphs
m The architecture of GNNs can be different depending on the properties of a
graph
m Graph properties yield graph types — Which graph types are there?
m Which graph types can be handled by GNN models?




GNNs for different Graph Types: The graph types

Gain

[ ]
m static structural properties
m semantic graph properties
m dynamic structural properties

GAIN 8



GNNs for different Graph Types: The graph types
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Gain

m static undirected graph
m static structural properties
[ ]

m dynamic structural properties
complete graph
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GNNs for different Graph Types: The graph types

Gain

m static undirected graph

m static structural properties
m semantic graph properties . .
[ ]
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strictly shrinking graph
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GNNs for different Graph Types: The representation of dynamic graphs

Gain
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GNNs for different Graph Types: The representation of dynamic graphs

Gain
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GNNs for different Graph Types: Where are the gaps?

Gain

m Much work has been done on GNN models for static graphs
m Exception: Multigraphs
m For hypergraphs few models exist for each graph type
m For graphs and hypergraphs in discrete-time models exist similar to the
static case
m Many gaps in models for graphs in continuous-time

m Deletion of nodes/edges
]

GAIN | 10
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GNNs for different Graph Types: Where are the gaps?

Gain

m Models for combined graph types and semantic graph properties are
developed application specific
m Some semantic graph properties are not explicitly handeled
m unconnected graphs
m acyclic graphs
m r-regular graphs
m Many gaps in models for hypergraphs in continuous-time
m Node/edge-attributes
m Node/edge-heterogenity
]
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The Modeling Power of different Graph Types

Josephine M. Thomas™, Silvia Beddar-Wiesing*, Alice Moallemy-Oureh*, Rudiger Nather: Graph
type expressivity and transformations, https://arxiv.org/abs/2109.10708

e 12
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Gain

m Expressivity relation

m Examples of expressivity relations

m All attributed graph types can be transformed into a SAUHG
m All attributed graph types are equally expressive
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The Modeling Power of different Graph Types: Expressivity relation

Gain

A graph type G, is at least as expressive as a graph type G, if and only if G»
encodes at least as many graph properties as G; denoted as G; < G,. In case both
types encode the same graph properties it is denoted as G; ~ G,.

GAIN 14



The Modeling Power of different Graph Types: Expres. relation examples

Gain

- (w1, (. —1)]
w3 2% %% 2 [(W3,1)]

V3

V3

Transformation directed to undirected graph:
Storing the directions and multiple attributes in the new attributes.

GAIN



The Modeling Power of different Graph Types: Expres. relation examples

Gain
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Transformation dynamic to static graph:
Cummulating the structural information in one entire graph and storing the
corresponding attribute time series as the new attributes.
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The Modeling Power of different Graph Types: Expres. relation examples

Gain
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Transformation dynamic to static graph:
Cummulating the structural information in one entire graph and storing the
corresponding attribute time series as the new attributes.
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The Modeling Power of different Graph Types: Results @
Gain

All attributed graph types can be transformed into a static attributed undirected
homogeneous graph (SAUHG).
All attributed graph types are equally expressive.

— We can transform graph data to be able to use an arbitrary GNN.
— We are free to choose a graph type that models our problem best.




s

Sores
SIS

gi% § Gain

UNIVERSITA
pi SIENA
1240

Weisfeiler-Lehmann goes Dynamic:
An Analysis of the Expressive Power of

Graph Neural Networks for
Attributed and Dynamic Graphs




Weisfeiler-Lehman goes dynamic &
Motivation: Expressivity of GNNs cain
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Scarselli et. al (2009) Xu et. al (2018)
GNNs cannot distinguish no- | [GNNs are as powerful as

des having the same unfolding | |the Weisfeiler-Lehman graph
trees. isomorphism test (1-WL, 1968).

D’Inverno et. al (2021)

The WL-test and the unfolding
trees induce the same equiva-
lence relationship on graphs.
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GNNs cannot distinguish no- | [GNNs are as powerful as

des having the same unfolding | |the Weisfeiler-Lehman graph
trees. isomorphism test (1-WL, 1968).

D’Inverno et. al (2021)

The WL-test and the unfolding
trees induce the same equiva-
lence relationship on graphs.

— static node-attributed graphs only!
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Motivation: Expressivity of GNNs cain

D’Inverno et. al (2021)

Message Passing GNNs can
approximate in probability any
measurable function that re-
spects the unfolding equivalence.

Azizian et. al (2020)

Message Passing GNNs are
dense in continuous functions
on graphs modulo 1-WL.
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Motivation: Expressivity of GNNs cain

D’Inverno et. al (2021)

Message Passing GNNs can
approximate in probability any
measurable function that re-
spects the unfolding equivalence.

Azizian et. al (2020)

Message Passing GNNs are
dense in continuous functions
on graphs modulo 1-WL.

— static node-attributed graphs only!
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Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs cain

Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the
Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint GAIN | 20



Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs cain

m Extension of WL-Tests and unfolding trees to (edge-)attributes and dynamics

m Proof of Extended Approximation Theorems: GNNs can approximate to
any precision and probability any measurable function on attributed and
dynamic graphs

Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the
Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint GAIN | 20
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Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

2 4 k=0
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k=1
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Weisfeiler-Lehman goes dynamic &
Recap: WL-Test and Unfolding Trees cain

2 4 k=0

1
k=1
3 5 k=2

{2,3} {1} {4,5}

(Thank you Nils Kriege for the wonderful illustration!)




Recap: WL-Test and Unfolding Trees

Recap: WL-Test and Unfolding Trees cain

Unfolding Trees of both blue nodes
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Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees cain

I:l hashed node/edge attribute

- -> attribute aggregation

GAIN | 23



Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees cain

Unfolding Trees of both blue nodes

GAIN 24



Extension of WL-Test and Unfolding Trees

Weisfeiler-Lehman goes dynamic @
Gain

WL Coloring for Dynamic Graphs

Dynamic Graph G Statified Graph G'
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Weisfeiler-Lehman goes dynamic
Extension of WL-Test and Unfolding Trees

Unfolding Trees for Dynamic Graphs

Gain

(1) 1 (1.2) (2- 2

Dynamic Graph G

) 8
a a
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time

Statified Graph G'
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dynamic unfolding trees of a, ¢
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Weisfeiler-Lehman goes dynamic

Equivalence of WL and UT Gain

For all nodes u, v holds:
in the attributed case:

U~AawL V < U ~AUT V.
in the dynamic case:

u~pwL V< U~pyrt V.

GAIN | 27



Weisfeiler-Lehman goes dynamic

Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN) cain
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Weisfeiler-Lehman goes dynamic
Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

Fora SAUHG G = (V, €&, a,w), let v € V. The propagation scheme of the SGNN
for one iteration k € [K] is defined as

Gain

hi = COMBINE | h{™', AGGREGATE ({h{ ™ }uen), {w({u, v uen) )
~—~—
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Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

Fora SAUHG G = (V, €&, a,w), let v € V. The propagation scheme of the SGNN
for one iteration k € [K] is defined as

Gain

hi = COMBINE | h{™', AGGREGATE ({h{ ™ }uen), {w({u, v uen) )
~—~—

For a discrete dynamic graph G’ = (G;)¢e/, let v € V;. The propagation scheme
of the MP-DGNN for one iteration k € [K] at is defined as

v

hi(1) = COMBINE() | h~2(1), AGGREGATE! ({h5™ (1) uew: (1) {0(uy (1) bueni(v))
N——
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Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN cain
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Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN cain

For

m Domain of SAUHGs G and
r = maxdiam(G);
g€eg

®m any measurable function f preserving
~AUT

m any norm || - || on R and probability
measure P on G;

m ¢, A € R, precision ¢ > 0, probability
A€ (0,1).
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m ¢, A € R, precision ¢ > 0, probability
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Universal Approximation of SGNN and MP-DGNN

For
m Domain of SAUHGs G and
r = maxdiam(G);
g€eg

®m any measurable function f preserving
~AUT

m any norm || - || on R and probability
measure P on G;

m ¢, A € R, precision ¢ > 0, probability
A€ (0,1).

There exists an SGNN s.t. the
function ¢ realized by the SGNN,
computed after r + 1 steps for all
G € G and v € G, satisfies:

PUIf(Gv) =o(Gv)[[ <€) >1 - A

For

u
and
re = max diam(G;) Vt € [;
Greg’

m any measurable
m any norm || - || on R and probability
measure P on G,

B AER e>0, A€ (0,1).
There exists an s.t the
function ¢ realized by the MP-
DGNN, computed after r, + 1 steps
satisfies:

Pl l<e>1-x
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Weisfeiler-Lehman goes dynamic
Conclusion Gain

Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the
Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint GAIN 30



Weisfeiler-Lehman goes dynamic
Conclusion Gain

m There exist SGNNs and MP-DGNNs to approximate any measurable
function on attributed and dynamic graphs to any precision and probability.

m The proof is based on attributed and dynamic WL- and UT- equivalence.

Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the
Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint GAIN 30
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On the Extension of

the Weisfeiler-Lehman Hierarchy
by WL Tests for Arbitrary Graphs

S. Beddar-Wiesing, G.A. D’Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F: Scarselli On the
Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary Graphs, 18th International

Workshop On Mining and Learning with Graphs, 2022,
https://openreview.net/forum?id=Qt6GrgDz2y5 - 31
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Extension of the WL Hierarchy

Gain

Extensions to k-AWL/DWL are analogously.
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Gcain

The WL Hierachy

1-WL=2-WLC3WLC...Ck-WLC...CGI

How do the k-AWL and k-DWL fit there?




Extension of the WL Hierarchy

Gain

2 2 2 5
1-WL g_ 1-AWL 4M3 Srw Frawe 4I>.i.<19
— k-WL C k-AWL 2 2 1 0
2-WL C 1-AWL

k-AWL/DWL C (k + 1)-AWL/DWL
k-AWL = k-DWL

GAIN | 34



Extension of the WL Hierarchy

Gain

2 2 2 5
1-WL g_ 1-AWL 4M3 FLwe FrawL 4I>.i.<19
— k-WL C k-AWL 2 > 1 0

2-WL < 1-AWL
k-AWL/DWL C (k + 1)-AWL/DWL
k-AWL = k-DWL

3-WL ¢ 1-AWL
3-WL 2 1-AWL
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2 2
.. 3 WL S1-AWL 4M3
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Extension of the WL Hierarchy

2 2
43 <¢>3WL S1AWL
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4M3 <:>§ wL 1AWl
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Extension of the WL Hierarchy ﬁ
Gcain

AGI| = DGI
/ b m Extended WL Hierarchy induces a
Gl -AWL = k-DWL .
: o lattice.
KWL 3-AWL = 3-DWL
3L 1-AWL = 2-AWI

= 1-DWL
/ = 2-DWL

1-WL = 2-WL




Extension of the WL Hierarchy

= DGI
el k- = k-DWL
k-WL 3-AWL = 3-DWL
3-wL 1- =2-
= 1-DWL
/ = 2-DWL
1-WL = 2-WL

m Extended WL Hierarchy induces a

lattice.

m Def.: A lattice is (L, A, V), with set L and
associative and commutative operations
A, V fulfilling the absorption and the

idempotent laws.
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el k- = k-DWL
k-WL 3-AWL = 3-DWL
3-wL 1- =2-
= 1-DWL
/ = 2-DWL
1-WL = 2-WL

m Extended WL Hierarchy induces a

lattice.

m Def.: A lattice is (L, A, V), with set L and
associative and commutative operations
A, V fulfilling the absorption and the

idempotent laws.

m Lattice is complete, infinite, bounded,

distributive and modular.

GAIN
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Extension of the WL Hierarchy ﬁ
Gcain

Why are these results so great?
m We could use lattice theory to solve open questions as e.g.:




Extension of the WL Hierarchy

Gain

m We could use lattice theory to solve ase.g.:
m How big is the difference |Pg| — | P4l of the partitions P4, Pg if A < B?
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Extension of the WL Hierarchy

Gain

m We could use lattice theory to solve ase.g.:
m How big is the difference |Pg| — | P4l of the partitions P4, Pg if A < B?
m Is it possible for two graphs to find the minimal WL test capable of
distinguishing the graphs?
m What are minimal requirements to a subset of WL tests such that it remains a
lattice, or that we obtain a semilattice?
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m The k-AWL/DWL extensions earlier are very simple, but mirror the GNN
architecture.

m There are more powerful extensions (without this property).

[ ] How would these change the WL lattice?

Since this is future work,
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m Reliability and safety of the power grid is essential

m The power grid is a complex system, which has to
adapt to changing conditions

m Fluctuations caused by renewable energies require a
high flexiblility
m Efficient power grid Operation is required for a

successful decarbonization "
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Graph Neural Networks for Power Grids

Approach
m Input: power grid at a specific time
stamp
m Construct Graph
m Apply GNN

@Gam

m Output: Encoded Graph indicating
the splitting candidates

m Change topology according to
prediction






















































https://GitHub.com/rte-france/grid2op

@qu

Ongoing Research












https://doi.org/10.1145/3477314.3508018






















	Graph Neural Networks for different Graph Types: A Survey
	The Modeling Power of different Graph Types
	WL goes Dynamic: Expressivity of GNNs for Attributed and Dynamic Graphs
	Extension of the WL Hierarchy by WL Tests for Arbitrary Graphs
	Graph Neural Networks for Power Grids
	Ongoing Research

