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The Research Center for Information System Design (ITeG) at the University

of Kassel focuses on socially responsible IT design.

We promote responsible, socially sustainable digitisation through

interdisciplinary research.

12 research groups from different disciplines (computer science, IT and

privacy law, information systems, psychology, sociology, human-machine

systems engineering).

Main areas of mutual research

Methods of socio-technical IT Design to increase digital self-determination

and souvereignty

Privacy and the dynamics of the information society

AI and Hybrid Intelligence and their embedding in the social system
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Graph Neural Networks for different Graph
Types: A Survey

Josephine M. Thomas∗, Alice Moallemy-Oureh∗, Silvia Beddar-Wiesing∗, Clara Holzhüter∗: Graph

Neural Networks Designed for Different Graph Types: A Survey,

❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✷✷✵✹✳✵✸✵✽✵
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Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

GNNs extend Neural Networks to work on graphs

The architecture of GNNs can be different depending on the properties of a

graph

Graph properties yield graph types → Which graph types are there?

Which graph types can be handled by GNN models?
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GNNs for different Graph Types: The graph types

static undirected graph

static structural properties

semantic graph properties

dynamic structural properties
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GNNs for different Graph Types: The graph types
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GNNs for different Graph Types: The graph types

static undirected graph

static structural properties

semantic graph properties

dynamic structural properties

strictly shrinking graph
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GNNs for different Graph Types: The representation of dynamic graphs

discrete-time
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continuous-time
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GNNs for different Graph Types: Where are the gaps?

Much work has been done on GNN models for static graphs

Exception: Multigraphs

For hypergraphs few models exist for each graph type

For graphs and hypergraphs in discrete-time models exist similar to the

static case

Many gaps in models for graphs in continuous-time

Deletion of nodes/edges

Dynamic attributes, especially if data-type is complex
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GNNs for different Graph Types: Where are the gaps?

Models for combined graph types and semantic graph properties are

developed application specific

Some semantic graph properties are not explicitly handeled

unconnected graphs

acyclic graphs

r-regular graphs

Many gaps in models for hypergraphs in continuous-time

Node/edge-attributes

Node/edge-heterogenity

Multiple nodes/eges
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The Modeling Power of different Graph Types

Josephine M. Thomas∗, Silvia Beddar-Wiesing∗, Alice Moallemy-Oureh∗, Rüdiger Nather: Graph

type expressivity and transformations, ❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✷✶✵✾✳✶✵✼✵✽
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information?
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The Modeling Power of different Graph Types: Expressivity relation

How do we assess the ability of different graph types to represent

information?

A graph type G✷ is at least as expressive as a graph type G✶, if and only if G✷
encodes at least as many graph properties as G✶ denoted as G✶ 4 G✷. In case both

types encode the same graph properties it is denoted as G✶ ≈ G✷.
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The Modeling Power of different Graph Types: Expres. relation examples

v✶ v✷

v✸

v✶ v✷

v✸

[(w✶, ✶), (w✷,−✶)]

[(w✸, ✶)]

w✶

w✷

w✸

Gdirected 4 Gundirected

Transformation directed to undirected graph:

Storing the directions and multiple attributes in the new attributes.
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Gdynamic 4 Gstatic

Transformation dynamic to static graph:

Cummulating the structural information in one entire graph and storing the

corresponding attribute time series as the new attributes.
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The Modeling Power of different Graph Types: Results

All attributed graph types can be transformed into a static attributed undirected

homogeneous graph (SAUHG).

All attributed graph types are equally expressive.

→ We can transform graph data to be able to use an arbitrary GNN.

→ We are free to choose a graph type that models our problem best.
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DI 

Weisfeiler–Lehmann goes Dynamic:

An Analysis of the Expressive Power of

Graph Neural Networks for
Attributed and Dynamic Graphs
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Which graphs/nodes can a GNN distinguish?

Scarselli et. al (2009)

GNNs cannot distinguish no-

des having the same unfolding

trees.

Xu et. al (2018)

GNNs are as powerful as

the Weisfeiler-Lehman graph

isomorphism test (1-WL, 1968).

︸ ︷︷ ︸

D’Inverno et. al (2021)

The WL-test and the unfolding

trees induce the same equiva-

lence relationship on graphs.
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D’Inverno et. al (2021)

The WL-test and the unfolding

trees induce the same equiva-

lence relationship on graphs.

→ static node-attributed graphs only!
18



GAIN

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

19



GAIN

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which functions can a GNN approximate?

D’Inverno et. al (2021)

Message Passing GNNs can

approximate in probability any

measurable function that re-

spects the unfolding equivalence.

Azizian et. al (2020)

Message Passing GNNs are

dense in continuous functions

on graphs modulo 1-WL.

19



GAIN

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which functions can a GNN approximate?

D’Inverno et. al (2021)

Message Passing GNNs can

approximate in probability any

measurable function that re-

spects the unfolding equivalence.
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Message Passing GNNs are

dense in continuous functions

on graphs modulo 1-WL.

→ static node-attributed graphs only!
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Weisfeiler-Lehman goes dynamic1

Motivation: Expressivity of GNNs

Contributions

1
Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the

Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint 20
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Weisfeiler-Lehman goes dynamic1

Motivation: Expressivity of GNNs

Contributions
Extension of WL-Tests and unfolding trees to (edge-)attributes and dynamics

Proof of Extended Approximation Theorems: GNNs can approximate to

any precision and probability any measurable function on attributed and

dynamic graphs

1
Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the

Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint 20
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Recap: WL-Test and Unfolding Trees

21



GAIN

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

1

2

3

4

5

k=0

k=1

k=2

{1,2,3,4,5}

21



GAIN

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

1

2

3

4

5

k=0

k=1

k=2

{2,3} {1,4,5}

21



GAIN

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

1

2

3

4

5

k=0

k=1

k=2

{2,3} {1} {4,5}

21



GAIN

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

1

2

3

4

5

k=0

k=1

k=2

{2,3} {1} {4,5}

(Thank you Nils Kriege for the wonderful illustration!)
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Recap: WL-Test and Unfolding Trees
Recap: WL-Test and Unfolding Trees

Unfolding Trees
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Weisfeiler-Lehman goes dynamic
Extension of WL-Test and Unfolding Trees

WL Coloring for Attributed Graphs

hashed node/edge attribute

attribute aggregation
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Weisfeiler-Lehman goes dynamic
Extension of WL-Test and Unfolding Trees

Unfolding Trees for Attributed Graphs

Unfolding Trees of both blue nodes

=
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Weisfeiler-Lehman goes dynamic
Extension of WL-Test and Unfolding Trees

WL Coloring for Dynamic Graphs
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Weisfeiler-Lehman goes dynamic
Extension of WL-Test and Unfolding Trees

Unfolding Trees for Dynamic Graphs
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Weisfeiler-Lehman goes dynamic
Equivalence of WL and UT

Proposition

For all nodes u, v holds:

1 in the attributed case:

u ∼AWL v ⇔ u ∼AUT v .

2 in the dynamic case:

u ∼DWL v ⇔ u ∼DUT v .

27
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Weisfeiler-Lehman goes dynamic
Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

❤ ❤
✶

❤
✶

✶ ✶
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Weisfeiler-Lehman goes dynamic
Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

For a SAUHG G = (V, E , α, ω), let v ∈ V. The propagation scheme of the SGNN

for one iteration k ∈ [K ] is defined as

❤
k
v = COMBINE






❤
k−✶

v
︸ ︷︷ ︸

history

,AGGREGATE
(

{❤k−✶

u }u∈N (v), {ω({u, v})}u∈N (v)

)

︸ ︷︷ ︸

neighborhood aggregation






.

✶ ✶
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For a SAUHG G = (V, E , α, ω), let v ∈ V. The propagation scheme of the SGNN

for one iteration k ∈ [K ] is defined as

❤
k
v = COMBINE






❤
k−✶

v
︸ ︷︷ ︸

history

,AGGREGATE
(

{❤k−✶

u }u∈N (v), {ω({u, v})}u∈N (v)

)

︸ ︷︷ ︸

neighborhood aggregation






.

For a discrete dynamic graph G ′ = (Gt)t∈I , let v ∈ Vt . The propagation scheme

of the MP-DGNN for one iteration k ∈ [K ] at timestamp t ∈ [T ] is defined as

hkv (t) = COMBINE
(k)
t






hk−✶

v (t)
︸ ︷︷ ︸

history

,AGGREGATEk
t

(

{hk−✶

u (t)}u∈Nt(v), {ω{u,v}(t)}u∈Nt(v)

)

︸ ︷︷ ︸

temporal neighborhood aggregation
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Weisfeiler-Lehman goes dynamic
Universal Approximation of SGNN and MP-DGNN

✵
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✶

✶
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✶

✶
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For
Domain of SAUHGs G and
r = max

g∈G
diam(G);

any measurable function f preserving
∼AUT ;

any norm ‖ · ‖ on R and probability
measure P on G;

ǫ, λ ∈ R, precision ǫ > ✵, probability
λ ∈ (✵, ✶).
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Universal Approximation of SGNN and MP-DGNN

For
Domain of SAUHGs G and
r = max

g∈G
diam(G);

any measurable function f preserving
∼AUT ;

any norm ‖ · ‖ on R and probability
measure P on G;

ǫ, λ ∈ R, precision ǫ > ✵, probability
λ ∈ (✵, ✶).

There exists an SGNN s.t. the

function ϕ realized by the SGNN,

computed after r + ✶ steps for all

G ∈ G and v ∈ G , satisfies:

P (‖f (G , v)− ϕ(G , v)‖ ≤ ǫ) ≥ ✶− λ.

For
Domain of discrete dyn. graphs
G ′ = (Gt)t∈I ∈ G′ and
rt = max

Gt∈G′

diam(Gt) ∀t ∈ I ;

any measurable dynamic system
dyn(t,G ′, v) preserving ∼DUT ;

any norm ‖ · ‖ on R and probability
measure P on G;

ǫ, λ ∈ R, ǫ > ✵, λ ∈ (✵, ✶).

There exists an MP-DGNN s.t the

function ψ realized by the MP-

DGNN, computed after rt + ✶ steps

satisfies:

P
(
‖dyn(t,G ′, v)− ψ(G ′, v)‖ ≤ ǫ

)
≥ ✶− λ.
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Weisfeiler-Lehman goes dynamic2

Conclusion

2
Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the

Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint 30



GAIN

Weisfeiler-Lehman goes dynamic2

Conclusion

There exist SGNNs and MP-DGNNs to approximate any measurable

function on attributed and dynamic graphs to any precision and probability.

The proof is based on attributed and dynamic WL- and UT- equivalence.

2
Beddar-Wiesing, D’Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler–Lehman goes Dynamic: An Analysis of the

Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint 30
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Extensions to k-AWL/DWL are analogously.
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How do the k-AWL and k-DWL fit there?
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Extended WL Hierarchy induces a

lattice.

Def.: A lattice is (L,∧,∨), with set L and

associative and commutative operations

∧, ∨ fulfilling the absorption and the

idempotent laws.

Lattice is complete, infinite, bounded,

distributive and modular.
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Why are these results so great?

We could use lattice theory to solve open questions as e.g.:

How big is the difference |PB | − |PA| of the partitions PA,PB if A ≤ B?

Is it possible for two graphs to find the minimal WL test capable of

distinguishing the graphs?

What are minimal requirements to a subset of WL tests such that it remains a

lattice, or that we obtain a semilattice?

Further future work

The k-AWL/DWL extensions earlier are very simple, but mirror the GNN

architecture.

There are more powerful extensions (without this property).

→ How would these change the WL lattice?

Since this is future work, feel free to share your expertise!
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The Importance of the Power Grid

Reliability and safety of the power grid is essential

The power grid is a complex system, which has to

adapt to changing conditions

Fluctuations caused by renewable energies require a

high flexiblility

Efficient power grid Operation is required for a

successful decarbonization
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Graph Neural Networks for Power Grids

Power Grid Operation

Massive amount of regulatory actions available for the network operators

Different actions: redispatch, topological operations

Topology changes are typically low

cost actions

Simulating every action is not

feasible

Topology changes are

underexploited options

⇒ Deep Learning Models
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Graph Neural Networks for Power Grids

GNNs for Electricity Networks

The power grid has an inherent graph structure

Its components are strongly correlated

GNNs can leverage the power grid’s topology to generate a graph output

Goal: Design a GNN to predict a suitable topology

41
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Hardly any approaches for this specific use case

Apply dedicated GNN architecture

Include historical data

Time Series Embedding

Dynamic GNN
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Ultimate Goal

Combine the GNN Approach with a Reinforcement Learning Algorithm
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Graph Neural Networks for Power Grids

Learning to Run a Power Network

NeurIPS Challenge "L2RPN"3

Hardly any Agents using GNNs

Influence of GNNs has not been fully investigated

GNNs for Imitation Learning as benchmark

3
Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer,

Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems
Research vol. 189, Elsevier 46
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Graph Neural Networks for Power Grids

GNN Pipeline with the Gri2Op4Virtual Power Grid
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B. Donnot, Grid2op- A testbed platform to model sequential decision making in power systems.
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Local Activity Encoding for Dynamic Graph Pooling in Structure
Dynamic Graphs5

graph compression
algorithm for processing
structural dynamic graphs

includes local activity
encoding with
subsequent pooling

generates important
graph sequence of equal
sizes in O(T )

GNN

Heatmap Pooling Input

delete edge

t5
node turns

inactive

t2 t3t0
add nodes

add edge

t1
add node

add edge

t4 t6

decreasing activity

inactivity

new node

new edge

deletion

add node

add edge

5
Beddar-Wiesing: Using local activity encoding for dynamic graph pooling in stuctural-dynamic graphs, SAC ’22: Proceedings of the 37th

ACM/SIGAPP Symposium on Applied Computing 50
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Continuous-Time Generative GNN for Attributed Dynamic Graphs6

Let G = (gt✵ ,E) be a dynamic

graph in continuous-time.

The approach is determined by:

1 Discretization of G

2 Embedding via vGAE

3 Interpret timestamps as

another embedding space

scaling axis and fit

Gaussian regression

functions

a)

t✶ t✷ t✸

fn
n

b)

emb. coord. of node n at time ti
emb. forecast coord. of node n at time ti+✶
polynomial regression function fn(t)

6
Moallemy-Oureh: Continuous-time generative graph neural network for attributed dynamic graphs, SAC ’22: Proceedings of the 37th

ACM/SIGAPP Symposium on Applied Computing, ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✹✼✼✸✶✹✳✸✺✵✽✵✶✽ 51
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