Hot Topics in Graph Neural Networks

Graphs in Artificial Intelligence and Neural Networks
Josephine Thomas, Silvia Beddar-Wiesing, Clara Holzhüter, Alice Moallemy-Oureh
25th of October 2022

System Design

- The Research Center for Information System Design (ITeG) at the University of Kassel focuses on socially responsible IT design.
- We promote responsible, socially sustainable digitisation through interdisciplinary research.
- 12 research groups from different disciplines (computer science, IT and privacy law, information systems, psychology, sociology, human-machine systems engineering).

Main areas of mutual research

- Methods of socio-technical IT Design to increase digital self-determination and souvereignty
- Privacy and the dynamics of the information society
- AI and Hybrid Intelligence and their embedding in the social system

Josephine Thomas

Clara Holzhüter

Silvia Beddar-Wiesing
Alice Moallemy-Oureh

Eric Alsmann
Rüdiger Nather Till-Mattis Nebel
Björn-André Schröder

Christoph Scholz

Workshop Agenda

Content

1 Graph Neural Networks for different Graph Types: A Survey
2 The Modeling Power of different Graph Types
3 WL goes Dynamic: Expressivity of GNNs for Attributed and Dynamic Graphs
4 Extension of the WL Hierarchy by WL Tests for Arbitrary Graphs
5 Graph Neural Networks for Power Grids
6 Ongoing Research

Graph Neural Networks for different Graph Types: A Survey

Josephine M. Thomas*, Alice Moallemy-Oureh*, Silvia Beddar-Wiesing*, Clara Holzhüter*: Graph Neural Networks Designed for Different Graph Types: A Survey, https://arxiv.org/abs/2204.03080

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

■ GNNs extend Neural Networks to work on graphs

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

■ GNNs extend Neural Networks to work on graphs
■ The architecture of GNNs can be different depending on the properties of a graph

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

■ GNNs extend Neural Networks to work on graphs
■ The architecture of GNNs can be different depending on the properties of a graph
■ Graph properties yield graph types \rightarrow Which graph types are there?

Graph Neural Networks for different Graph Types: A Survey

What can GNNs achieve nowadays and where is work to be done?

■ GNNs extend Neural Networks to work on graphs
■ The architecture of GNNs can be different depending on the properties of a graph

■ Graph properties yield graph types \rightarrow Which graph types are there?

- Which graph types can be handled by GNN models?

GNNs for different Graph Types: The graph types

- static undirected graph
- static structural properties
- semantic graph properties

■ dynamic structural properties

GNNs for different Graph Types: The graph types

- static undirected graph
- static structural properties
- semantic graph properties

■ dynamic structural properties

GNNs for different Graph Types: The graph types

- static undirected graph
- static structural properties
- semantic graph properties

■ dynamic structural properties

complete graph

GNNs for different Graph Types: The graph types

- static undirected graph
- static structural properties
- semantic graph properties

■ dynamic structural properties

GNNs for different Graph Types: The representation of dynamic graphs

GNNs for different Graph Types: The representation of dynamic graphs

■ discrete-time
dynamic

GNNs for different Graph Types: The representation of dynamic graphs

- discrete-time dynamic

- continuous-time dynamic

GNNs for different Graph Types: Where are the gaps?

GNNs for different Graph Types: Where are the gaps?

■ Much work has been done on GNN models for static graphs

GNNs for different Graph Types: Where are the gaps?

■ Much work has been done on GNN models for static graphs
■ Exception: Multigraphs

GNNs for different Graph Types: Where are the gaps?

- Much work has been done on GNN models for static graphs

■ Exception: Multigraphs
■ For hypergraphs few models exist for each graph type

GNNs for different Graph Types: Where are the gaps?

- Much work has been done on GNN models for static graphs

■ Exception: Multigraphs
■ For hypergraphs few models exist for each graph type
■ For graphs and hypergraphs in discrete-time models exist similar to the static case

GNNs for different Graph Types: Where are the gaps?

- Much work has been done on GNN models for static graphs

■ Exception: Multigraphs
■ For hypergraphs few models exist for each graph type
■ For graphs and hypergraphs in discrete-time models exist similar to the static case
■ Many gaps in models for graphs in continuous-time

GNNs for different Graph Types: Where are the gaps?

- Much work has been done on GNN models for static graphs

■ Exception: Multigraphs
■ For hypergraphs few models exist for each graph type
■ For graphs and hypergraphs in discrete-time models exist similar to the static case
■ Many gaps in models for graphs in continuous-time
■ Deletion of nodes/edges

GNNs for different Graph Types: Where are the gaps?

- Much work has been done on GNN models for static graphs

■ Exception: Multigraphs
■ For hypergraphs few models exist for each graph type
■ For graphs and hypergraphs in discrete-time models exist similar to the static case
■ Many gaps in models for graphs in continuous-time
■ Deletion of nodes/edges

- Dynamic attributes, especially if data-type is complex

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled
■ unconnected graphs

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific

- Some semantic graph properties are not explicitly handeled
- unconnected graphs
- acyclic graphs

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled

- unconnected graphs
- acyclic graphs
- r-regular graphs

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled

- unconnected graphs
- acyclic graphs
- r-regular graphs

■ Many gaps in models for hypergraphs in continuous-time

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled

- unconnected graphs
- acyclic graphs
- r-regular graphs
- Many gaps in models for hypergraphs in continuous-time

■ Node/edge-attributes

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled

- unconnected graphs
- acyclic graphs
- r-regular graphs
- Many gaps in models for hypergraphs in continuous-time

■ Node/edge-attributes
■ Node/edge-heterogenity

GNNs for different Graph Types: Where are the gaps?

■ Models for combined graph types and semantic graph properties are developed application specific
■ Some semantic graph properties are not explicitly handeled
■ unconnected graphs

- acyclic graphs
- r-regular graphs
- Many gaps in models for hypergraphs in continuous-time

■ Node/edge-attributes
■ Node/edge-heterogenity
■ Multiple nodes/eges

The Modeling Power of different Graph Types

Josephine M. Thomas*, Silvia Beddar-Wiesing*, Alice Moallemy-Oureh*, Rüdiger Nather: Graph type expressivity and transformations, https://arxiv.org/abs/2109.10708

The Modeling Power of different Graph Types

How do we assess the ability of different graph types to represent information?

The Modeling Power of different Graph Types

How do we assess the ability of different graph types to represent information?

- Expressivity relation

The Modeling Power of different Graph Types

How do we assess the ability of different graph types to represent information?

- Expressivity relation

■ Examples of expressivity relations

The Modeling Power of different Graph Types

How do we assess the ability of different graph types to represent information?

- Expressivity relation
- Examples of expressivity relations
- All attributed graph types can be transformed into a SAUHG

The Modeling Power of different Graph Types

How do we assess the ability of different graph types to represent information?

■ Expressivity relation

- Examples of expressivity relations
- All attributed graph types can be transformed into a SAUHG
- All attributed graph types are equally expressive

The Modeling Power of different Graph Types: Expressivity relation

How do we assess the ability of different graph types to represent information?

A graph type \mathcal{G}_{2} is at least as expressive as a graph type \mathcal{G}_{1}, if and only if \mathcal{G}_{2} encodes at least as many graph properties as \mathcal{G}_{1} denoted as $\mathcal{G}_{1} \preccurlyeq \mathcal{G}_{2}$. In case both types encode the same graph properties it is denoted as $\mathcal{G}_{1} \approx \mathcal{G}_{2}$.

Transformation directed to undirected graph:
Storing the directions and multiple attributes in the new attributes.

The Modeling Power of different Graph Types: Expres. relation examples

Transformation dynamic to static graph:
Cummulating the structural information in one entire graph and storing the corresponding attribute time series as the new attributes.

The Modeling Power of different Graph Types: Expres. relation examples

Transformation dynamic to static graph:
Cummulating the structural information in one entire graph and storing the corresponding attribute time series as the new attributes.

The Modeling Power of different Graph Types: Results

The Modeling Power of different Graph Types: Results

> All attributed graph types can be transformed into a static attributed undirected homogeneous graph (SAUHG).

The Modeling Power of different Graph Types: Results

All attributed graph types can be transformed into a static attributed undirected homogeneous graph (SAUHG).

All attributed graph types are equally expressive.

The Modeling Power of different Graph Types: Results

All attributed graph types can be transformed into a static attributed undirected homogeneous graph (SAUHG).

All attrilbuted graph types are equally expressive.
\rightarrow We can transform graph data to be able to use an arbitrary GNN.

The Modeling Power of different Graph Types: Results

All attributed graph types can be transformed into a static attributed undirected homogeneous graph (SAUHG).

All attributed graph types are equally expressive.

\rightarrow We can transform graph data to be able to use an arbitrary GNN.
\rightarrow We are free to choose a graph type that models our problem best.

Weisfeiler-Lehmann goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs

Weisfeiler-Lehman goes dynamic

Motivation: Expressivity of GNNs

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which graphs/nodes can a GNN distinguish?

Scarselli et. al (2009)
GNNs cannot distinguish no-
des having the same unfolding
trees.

Xu et. al (2018)
GNNs are as powerful as the Weisfeiler-Lehman graph isomorphism test (1-WL, 1968).

> | D'Inverno et. al (2021) |
| :--- |
| The WL-test and the unfolding |
| trees induce the same equiva- |
| lence relationship on graphs. |

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which graphs/nodes can a GNN distinguish?

Scarselli et. al (2009)
GNNs cannot distinguish no-
des having the same unfolding
trees.

Xu et. al (2018)
GNNs are as powerful as the Weisfeiler-Lehman graph isomorphism test (1-WL, 1968).

> | D'Inverno et. al (2021) |
| :--- |
| The WL-test and the unfolding |
| trees induce the same equiva- |
| lence relationship on graphs. |

\rightarrow static node-attributed graphs only!

Weisfeiler-Lehman goes dynamic

Motivation: Expressivity of GNNs

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which functions can a GNN approximate?

D'Inverno et. al (2021)
Message Passing GNNs can
approximate in probability any
measurable function that re-
spects the unfolding equivalence.

Azizian et. al (2020)
Message Passing GNNs are dense in continuous functions on graphs modulo 1-WL.

Weisfeiler-Lehman goes dynamic
Motivation: Expressivity of GNNs

Which functions can a GNN approximate?

D'Inverno et. al (2021)
Message Passing GNNs can
approximate in probability any
measurable function that re-
spects the unfolding equivalence.

D'Inverno et. al (2021)
Message Passing GNNs can approximate in probability any measurable function that respects the unfolding equivalence.

Azizian et. al (2020)
Message Passing GNNs are dense in continuous functions on graphs modulo 1-WL.
\rightarrow static node-attributed graphs only!

Weisfeiler-Lehman goes dynamic
 Motivation: Expressivity of GNNs

Contributions

[^0]
Weisfeiler-Lehman goes dynamic ${ }^{1}$
 Motivation: Expressivity of GNNs

Contributions

■ Extension of WL-Tests and unfolding trees to (edge-)attributes and dynamics
■ Proof of Extended Approximation Theorems: GNNs can approximate to any precision and probability any measurable function on attributed and dynamic graphs

[^1]Weisfeiler-Lehman goes dynamic

Recap: WL-Test and Unfolding Trees

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

Weisfeiler-Lehman goes dynamic

Recap: WL-Test and Unfolding Trees

Weisfeiler-Lehman goes dynamic
Recap: WL-Test and Unfolding Trees

Weisfeiler-Lehman goes dynamic

Recap: WL-Test and Unfolding Trees

(Thank you Nils Kriege for the wonderful illustration!)

Unfolding Trees

Unfolding Trees of both blue nodes

Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees

WL Coloring for Attributed Graphs

Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees

Unfolding Trees for Attributed Graphs

Unfolding Trees of both blue nodes

Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees

WL Coloring for Dynamic Graphs

Weisfeiler-Lehman goes dynamic

Extension of WL-Test and Unfolding Trees

Unfolding Trees for Dynamic Graphs

Weisfeiler-Lehman goes dynamic

Equivalence of WL and UT

Proposition

For all nodes u, v holds:
1 in the attributed case:

$$
u \sim_{A W L} v \Leftrightarrow u \sim_{A U T} v
$$

2 in the dynamic case:

$$
u \sim_{D W L} v \Leftrightarrow u \sim_{D U T} v
$$

Weisfeiler-Lehman goes dynamic

Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)

Weisfeiler-Lehman goes dynamic
Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)
For a SAUHG $G=(\mathcal{V}, \mathcal{E}, \alpha, \omega)$, let $v \in \mathcal{V}$. The propagation scheme of the SGNN for one iteration $k \in[K]$ is defined as

$$
\boldsymbol{h}_{v}^{k}=\operatorname{COMBINE}(\underbrace{\boldsymbol{h}_{v}^{k-1}}_{\text {history }}, \underbrace{\operatorname{AGGREGATE}\left(\left\{\boldsymbol{h}_{u}^{k-1}\right\}_{u \in \mathcal{N}(v)},\{\omega(\{u, v\})\}_{u \in \mathcal{N}(v)}\right)}_{\text {neighborhood aggregation }}) .
$$

Weisfeiler-Lehman goes dynamic
Generic GNNs: GNN for SAUHGs (SGNN) and dynamic graphs (MP-DGNN)
For a SAUHG $G=(\mathcal{V}, \mathcal{E}, \alpha, \omega)$, let $v \in \mathcal{V}$. The propagation scheme of the SGNN for one iteration $k \in[K]$ is defined as

$$
\boldsymbol{h}_{v}^{k}=\text { COMBINE }(\underbrace{\boldsymbol{h}_{v}^{k-1}}_{\text {history }}, \underbrace{\operatorname{AGGREGATE}\left(\left\{\boldsymbol{h}_{u}^{k-1}\right\}_{u \in \mathcal{N}(v)},\{\omega(\{u, v\})\}_{u \in \mathcal{N}(v)}\right)}_{\text {neighborhood aggregation }})
$$

For a discrete dynamic graph $G^{\prime}=\left(G_{t}\right)_{t \in I}$, let $v \in \mathcal{V}_{t}$. The propagation scheme of the MP-DGNN for one iteration $k \in[K]$ at timestamp $t \in[T]$ is defined as
$h_{v}^{k}(t)=\operatorname{COMBINE}_{t}^{(k)}(\underbrace{h_{v}^{k-1}(t)}_{\text {history }}, \underbrace{\operatorname{AGGREGATE}_{t}^{k}\left(\left\{h_{u}^{k-1}(t)\right\}_{u \in \mathcal{N}_{t}(v)},\left\{\omega_{\{u, v\}}(t)\right\}_{u \in \mathcal{N}_{t}(v)}\right)}_{\text {temporal neighborhood aggregation }})$

Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN

Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN

For

- Domain of SAUHGs \mathcal{G} and
$r=\max _{g \in \mathcal{G}} \operatorname{diam}(G)$;
- any measurable function f preserving $\sim_{A U T}$;
■ any norm $\|\cdot\|$ on \mathbb{R} and probability measure P on \mathcal{G};

■ $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon>0$, probability $\lambda \in(0,1)$.

Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN
For

- Domain of SAUHGs \mathcal{G} and
$r=\max _{g \in \mathcal{G}} \operatorname{diam}(G)$;
- any measurable function f preserving $\sim_{A U T}$;
■ any norm $\|\cdot\|$ on \mathbb{R} and probability measure P on \mathcal{G};
■ $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon>0$, probability $\lambda \in(0,1)$.
There exists an SGNN s.t. the function φ realized by the SGNN, computed after $r+1$ steps for all $G \in \mathcal{G}$ and $v \in G$, satisfies:
$P(\|f(G, v)-\varphi(G, v)\| \leq \epsilon) \geq 1-\lambda$.

Weisfeiler-Lehman goes dynamic

Universal Approximation of SGNN and MP-DGNN

For

- Domain of SAUHGs \mathcal{G} and $r=\max _{g \in \mathcal{G}} \operatorname{diam}(G)$;
- any measurable function f preserving $\sim_{A U T}$;
■ any norm $\|\cdot\|$ on \mathbb{R} and probability measure P on \mathcal{G};

■ $\epsilon, \lambda \in \mathbb{R}$, precision $\epsilon>0$, probability $\lambda \in(0,1)$.

There exists an SGNN s.t. the function φ realized by the SGNN, computed after $r+1$ steps for all $G \in \mathcal{G}$ and $v \in G$, satisfies:
$P(\|f(G, v)-\varphi(G, v)\| \leq \epsilon) \geq 1-\lambda$.

For

- Domain of discrete dyn. graphs

$$
\begin{aligned}
& G^{\prime}=\left(G_{t}\right)_{t \in I} \in \mathcal{G}^{\prime} \text { and } \\
& r_{t}=\max _{G_{t} \in \mathcal{G}^{\prime}} \operatorname{diam}\left(G_{t}\right) \forall t \in I
\end{aligned}
$$

- any measurable dynamic system dyn $\left(t, G^{\prime}, v\right)$ preserving $\sim_{D U T}$;
■ any norm $\|\cdot\|$ on \mathbb{R} and probability measure P on \mathcal{G};

■ $\epsilon, \lambda \in \mathbb{R}, \epsilon>0, \lambda \in(0,1)$.
There exists an MP-DGNN s.t the function ψ realized by the MPDGNN, computed after $r_{t}+1$ steps satisfies:

$$
P\left(\left\|\operatorname{dyn}\left(t, G^{\prime}, v\right)-\psi\left(G^{\prime}, v\right)\right\| \leq \epsilon\right) \geq 1-\lambda .
$$

Weisfeiler-Lehman goes dynamic ${ }^{2}$

Conclusion

[^2]
Weisfeiler-Lehman goes dynamic ${ }^{2}$

Conclusion

- There exist SGNNs and MP-DGNNs to approximate any measurable function on attributed and dynamic graphs to any precision and probability.
■ The proof is based on attributed and dynamic WL- and UT- equivalence.

[^3]
On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary Graphs

S. Beddar-Wiesing, G.A. D'Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F: Scarselli On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary Graphs, 18th International Workshop On Mining and Learning with Graphs, 2022,

Extension of the WL Hierarchy

Higher dimensional WL test

Extension of the WL Hierarchy

Higher dimensional WL test

Extension of the WL Hierarchy

Higher dimensional WL test

Extension of the WL Hierarchy

Higher dimensional WL test

Extension of the WL Hierarchy

Higher dimensional WL test

Extensions to k-AWL/DWL are analogously.

Extension of the WL Hierarchy

The WL Hierachy
$\mathbf{1 - W L} \mathbf{=} \mathbf{2 - W L} \subsetneq \mathbf{3} \mathbf{- W L} \subsetneq \ldots \subsetneq k-\mathbf{W L} \subsetneq \ldots \subsetneq \mathbf{G I}$

Extension of the WL Hierarchy

The WL Hierachy

$$
\mathbf{1 - W L}=\mathbf{2} \mathbf{- W L} \subsetneq \mathbf{3} \mathbf{- W L} \subsetneq \ldots \subsetneq k-\mathbf{W L} \subsetneq \ldots \subsetneq \mathbf{G I}
$$

How do the k-AWL and k-DWL fit there?

Extension of the WL Hierarchy

Some trivial observations are:

■ 1-WL $\subsetneq 1-\mathrm{AWL}$
■ $\Rightarrow k-\mathrm{WL} \subsetneq k-\mathrm{AWL}$

■ 2-WL $\subsetneq 1-A W L$
■ $k-\mathrm{AWL} / \mathrm{DWL} \subseteq(k+1)-\mathrm{AWL} / \mathrm{DWL}$
■ $k-\mathrm{AWL}=k$-DWL

Extension of the WL Hierarchy

Some trivial observations are:

- 1-WL $\subsetneq 1-\mathrm{AWL}$

■ $\Rightarrow k-\mathrm{WL} \subsetneq k-\mathrm{AWL}$

■ 2-WL $\subsetneq 1-A W L$
■ $k-\mathrm{AWL} / \mathrm{DWL} \subseteq(k+1)-\mathrm{AWL} / \mathrm{DWL}$
■ $k-\mathrm{AWL}=k-\mathrm{DWL}$

Nevertheless, the hierarchy can just induce a partial order:

- 3-WL $\neq 1-\mathrm{AWL}$

■ 3-WL $\neq 1$-AWL
■...

Extension of the WL Hierarchy

$3-W L \nsubseteq 1-A W L$

Extension of the WL Hierarchy

3-WL $\neq 1$-AWL

3-WL $\nsupseteq 1$-AWL

Extension of the WL Hierarchy

- Extended WL Hierarchy induces a lattice.

Extension of the WL Hierarchy

■ Extended WL Hierarchy induces a lattice.

- Def.: A lattice is (L, \wedge, \vee), with set L and associative and commutative operations \wedge, \vee fulfilling the absorption and the idempotent laws.

Extension of the WL Hierarchy

■ Extended WL Hierarchy induces a lattice.
■ Def.: A lattice is (L, \wedge, \vee), with set L and associative and commutative operations \wedge, \vee fulfilling the absorption and the idempotent laws.
■ Lattice is complete, infinite, bounded, distributive and modular.

Extension of the WL Hierarchy

Why are these results so great?

- We could use lattice theory to solve open questions as e.g.:

Extension of the WL Hierarchy

Why are these results so great?

$■$ We could use lattice theory to solve open questions as e.g.:
■ How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?

Extension of the WL Hierarchy

Why are these results so great?

$■$ We could use lattice theory to solve open questions as e.g.:

- How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?
- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?

Extension of the WL Hierarchy

Why are these results so great?

■ We could use lattice theory to solve open questions as e.g.:

- How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?
- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
■ What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Extension of the WL Hierarchy

Why are these results so great?

■ We could use lattice theory to solve open questions as e.g.:

- How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?
- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
■ What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Further future work

■ The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.

Extension of the WL Hierarchy

Why are these results so great?

$■$ We could use lattice theory to solve open questions as e.g.:

- How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?
- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
■ What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Further future work

■ The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.

- There are more powerful extensions (without this property).

Extension of the WL Hierarchy

Why are these results so great?

$■$ We could use lattice theory to solve open questions as e.g.:
■ How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?

- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
■ What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Further future work

■ The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.

- There are more powerful extensions (without this property).
$■ \longrightarrow$ How would these change the WL lattice?

Extension of the WL Hierarchy

Why are these results so great?

$■$ We could use lattice theory to solve open questions as e.g.:

- How big is the difference $\left|\mathcal{P}_{B}\right|-\left|\mathcal{P}_{A}\right|$ of the partitions $\mathcal{P}_{A}, \mathcal{P}_{B}$ if $A \leq B$?
- Is it possible for two graphs to find the minimal WL test capable of distinguishing the graphs?
■ What are minimal requirements to a subset of WL tests such that it remains a lattice, or that we obtain a semilattice?

Further future work

■ The k-AWL/DWL extensions earlier are very simple, but mirror the GNN architecture.

- There are more powerful extensions (without this property).

■ \rightarrow How would these change the WL lattice?
Since this is future work, feel free to share your expertise!

Fraunhofer
IEE

Graph Neural Networks for Power Grids

Graph Neural Networks for Power Grids

The Importance of the Power Grid

■ Reliability and safety of the power grid is essential

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions
■ Fluctuations caused by renewable energies require a high flexiblility

The Importance of the Power Grid

- Reliability and safety of the power grid is essential
- The power grid is a complex system, which has to adapt to changing conditions
■ Fluctuations caused by renewable energies require a high flexiblility
■ Efficient power grid Operation is required for a successful decarbonization

Graph Neural Networks for Power Grids

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch,

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch, topological operations

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch, topological operations

- Topology changes are typically low cost actions

Graph Neural Networks for Power Grids

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch, topological operations

- Topology changes are typically low cost actions
- Simulating every action is not feasible

Graph Neural Networks for Power Grids

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch, topological operations

- Topology changes are typically low cost actions

■ Simulating every action is not feasible

■ Topology changes are underexploited options

Graph Neural Networks for Power Grids

Power Grid Operation

■ Massive amount of regulatory actions available for the network operators
■ Different actions: redispatch, topological operations

- Topology changes are typically low cost actions

■ Simulating every action is not feasible

■ Topology changes are underexploited options
\Rightarrow Deep Learning Models

Graph Neural Networks for Power Grids

GNNs for Electricity Networks

Graph Neural Networks for Power Grids

GNNs for Electricity Networks

- The power grid has an inherent graph structure

Graph Neural Networks for Power Grids

GNNs for Electricity Networks

- The power grid has an inherent graph structure
- Its components are strongly correlated

GNNs for Electricity Networks

■ The power grid has an inherent graph structure
■ Its components are strongly correlated
■ GNNs can leverage the power grid's topology to generate a graph output

GNNs for Electricity Networks

■ The power grid has an inherent graph structure
■ Its components are strongly correlated
■ GNNs can leverage the power grid's topology to generate a graph output Goal: Design a GNN to predict a suitable topology

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp

- Construct Graph
- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates
■ Change topology according to prediction

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp
■ Construct Graph

- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates

- Change topology according to prediction

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp

- Construct Graph
- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates
■ Change topology according to prediction

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp
■ Construct Graph

- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates
■ Change topology according to prediction

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp
■ Construct Graph

- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates
■ Change topology according to prediction

Graph Neural Networks for Power Grids

Approach

■ Input: power grid at a specific time stamp
■ Construct Graph

- Apply GNN

■ Output: Encoded Graph indicating the splitting candidates
■ Change topology according to prediction

\rightarrow Node Classifcation Task to identify the candidates for node splitting

Further Considerations

■ Hardly any approaches for this specific use case

Further Considerations

■ Hardly any approaches for this specific use case

- Apply dedicated GNN architecture

Further Considerations

■ Hardly any approaches for this specific use case

- Apply dedicated GNN architecture
- Include historical data

Further Considerations

■ Hardly any approaches for this specific use case

- Apply dedicated GNN architecture

■ Include historical data

- Time Series Embedding

Further Considerations

■ Hardly any approaches for this specific use case

- Apply dedicated GNN architecture
- Include historical data
- Time Series Embedding
- Dynamic GNN

Ultimate Goal

■ Combine the GNN Approach with a Reinforcement Learning Algorithm

Graph Neural Networks for Power Grids

Learning to Run a Power Network

[^4] Research vol. 189, Elsevier

Graph Neural Networks for Power Grids

Learning to Run a Power Network
 ■ NeurlPS Challenge "L2RPN"3

[^5]Graph Neural Networks for Power Grids

Learning to Run a Power Network

■ NeurlPS Challenge "L2RPN"3
■ Hardly any Agents using GNNs

[^6]
Graph Neural Networks for Power Grids

Learning to Run a Power Network

■ NeurlPS Challenge "L2RPN"3

- Hardly any Agents using GNNs
- Influence of GNNs has not been fully investigated

[^7]
Graph Neural Networks for Power Grids

Learning to Run a Power Network

■ NeurlPS Challenge "L2RPN"3
■ Hardly any Agents using GNNs

- Influence of GNNs has not been fully investigated

■ GNNs for Imitation Learning as benchmark

[^8]
Graph Neural Networks for Power Grids

GNN Pipeline with the Gri2Op¹Virtual Power Grid

[^9]
Ongoing Research

Ongoing Research

- Local Activity Encoding for Dynamic Graph Pooling in Structure Dynamic Graphs
- Continuous-Time Generative GNN for Attributed Dynamic Graphs
- FDGNN: Fully Dynamic GNN

Local Activity Encoding for Dynamic Graph Pooling in Structure Dynamic Graphs ${ }^{5}$

- graph compression algorithm for processing structural dynamic graphs

- includes local activity encoding with subsequent pooling
- generates important graph sequence of equal sizes in $\mathcal{O}(T)$

[^10]
Continuous-Time Generative GNN for Attributed Dynamic Graphs ${ }^{6}$

Let $G=\left(g_{t_{0}}, \mathbb{E}\right)$ be a dynamic graph in continuous-time.
The approach is determined by:
1 Discretization of G
2 Embedding via vGAE
3 Interpret timestamps as another embedding space scaling axis and fit Gaussian regression functions

b)

- emb. coord. of node n at time t_{i}
- emb. forecast coord. of node n at time t_{i+1}
\rightarrow polynomial regression function $f_{n}(t)$

[^11]
FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

[^12]
FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

[^13]
FDGNN: Fully Dynamic Graph Neural Network ${ }^{7}$

[^14]
Contact

Thank you for your attention! Questions?

Silvia Beddar-Wiesing

s.beddarwiesing@uni-kassel.de

Alice Moallemy-Oureh
amoallemy@uni-kassel.de
Clara Holzhüter
clara.holzhueter@uni-kassel.de
clara.juliane.holzhueter@iee.fraunhofer.de

gain-group.de

[^0]: Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

[^1]: Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the

[^2]: ${ }^{2}$ Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

[^3]: ${ }^{2}$ Beddar-Wiesing, D'Inverno, Graziani, Lachi, Moallemy-Oureh, Scarselli, Thomas: Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs, arxiv preprint

[^4]: ${ }^{3}$ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems

[^5]: ${ }^{3}$ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems

[^6]: ${ }^{3}$ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems

[^7]: ${ }^{3}$ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems

[^8]: ${ }^{3}$ Marot, Antoine and Donnot, Benjamin and Romero, Camilo and Donon, Balthazar and Lerousseau, Marvin and Veyrin-Forrer, Luca and Guyon, Isabelle: Learning to run a power network challenge for training topology controllers, Electric Power Systems

[^9]: B. Donnot, Grid2op- A testbed platform to model sequential decision making in power systems.

[^10]: ${ }^{5}$ Beddar-Wiesing: Using local activity encoding for dynamic graph pooling in stuctural-dynamic graphs, SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing

[^11]: ${ }^{6}$ Moallemy-Oureh: Continuous-time generative graph neural network for attributed dynamic graphs, SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, https://doi.org/10.1145/3477314.3508018

[^12]: Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

[^13]: Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

[^14]: Moallemy-Oureh, Beddar-Wiesing, Nather, Thomas: FDGNN: Fully Dynamic Graph Neural Network, arXiv:2206.03469

