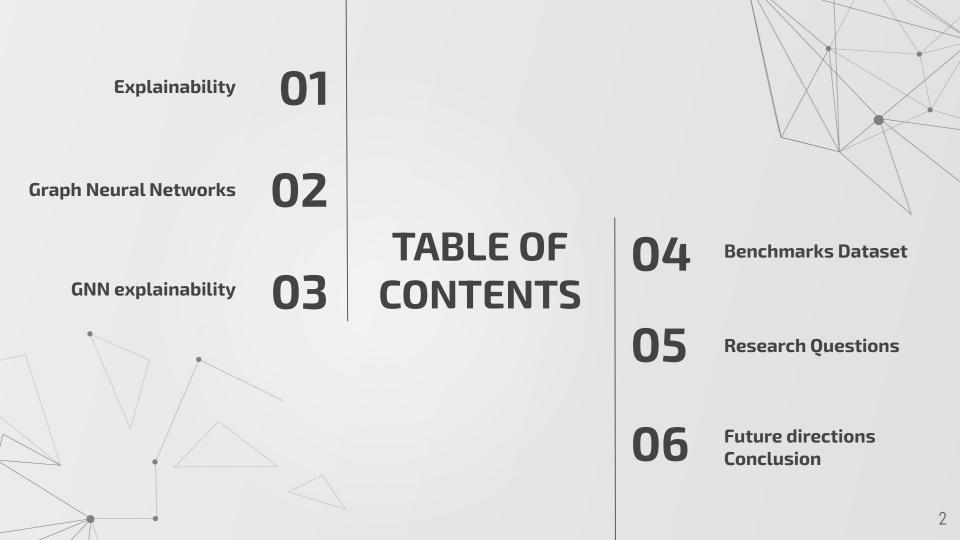
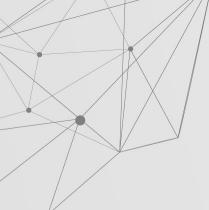
Explaining the Explainers in Graph Neural Networks: a Comparative Study

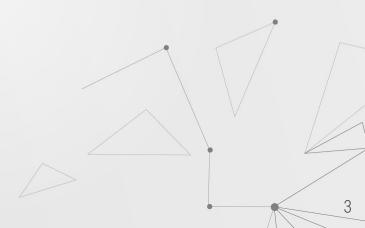
Antonio Longa^{1,2}, Steave Azzolin¹, Gabriele Santin², Giulia Cencetti², Pietro Lio³, Bruno Lepri², Andrea Passerini¹

> SML¹ Lab, University of Trento, Italy MobS² Lab, Fondazione Bruno Kessler,Trento, Italy Cambridge³ University, Cambridge, UK

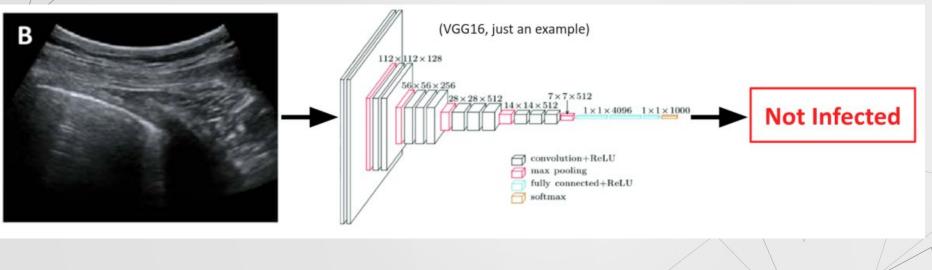




You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep neural network to automatically compute a diagnosis. The model thinks that you are not infected.

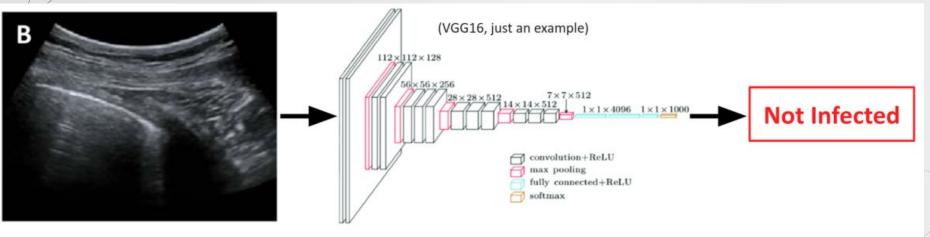


You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep neural network to automatically compute a diagnosis. The model thinks that you are not infected.



4

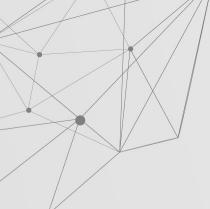
You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep neural network to automatically compute a diagnosis. The model thinks that you are not infected.



5

Question: Would you trust the model's prediction?

Thanks to Stefano Teso for slides



People are finding more and more ways of integrating machine learning models into applications.

People are finding more and more ways of integrating machine learning models into applications.

- Medical Diagnosis
- Crime (e.g., predicting recidivism in convicts)
- Credit Scoring (e.g., approving loan requests)
- Surveillance (e.g., face recognition, profiling)
- Hiring (e.g., ranking/filtering candidates)

People are finding more and more ways of integrating machine learning models into applications.

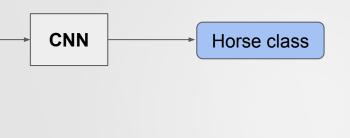
- Medical Diagnosis
- Crime (e.g., predicting recidivism in convicts)
- Credit Scoring (e.g., approving loan requests)
- Surveillance (e.g., face recognition, profiling)
- Hiring (e.g., ranking/filtering candidates)
- ...

Right of explanation:

Example: you apply for a 50, 000 euro loan. Unfortunately, your bank rejects your application. You have a right to know why it was rejected: was it your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

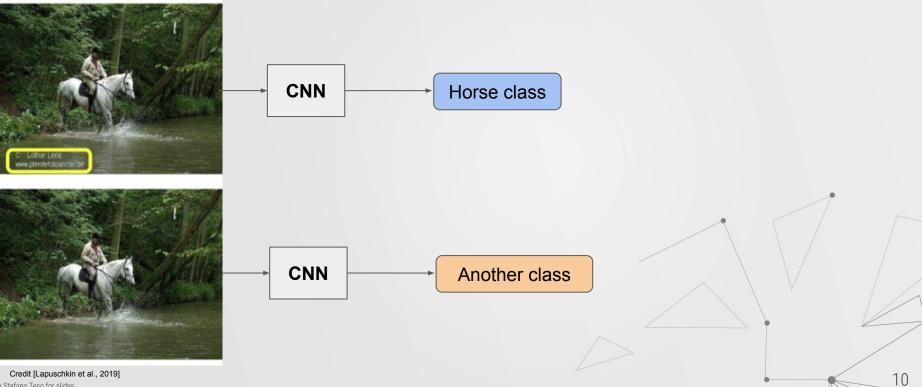
Horse-picture from Pascal VOC data set



9

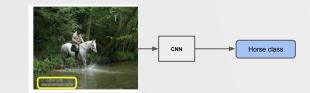
Credit [Lapuschkin et al., 2019]

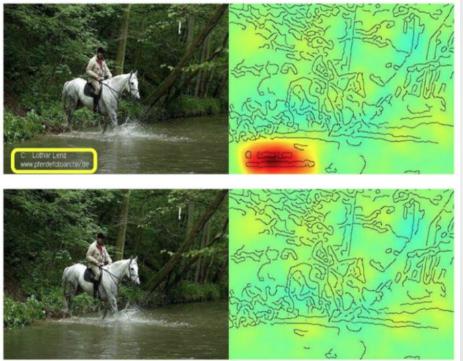
Horse-picture from Pascal VOC data set



Thanks to Stefano Teso for slides

Horse-picture from Pascal VOC data set

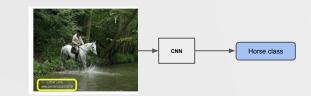




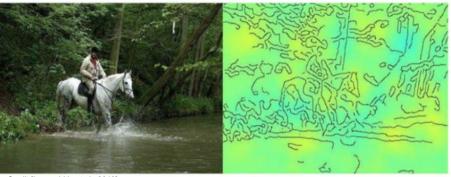
Credit [Lapuschkin et al., 2019]

_____11

Horse-picture from Pascal VOC data set



Correlation between the presence of a watermark when an horse is present.



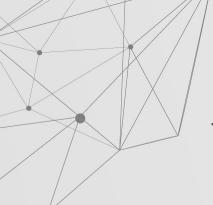
Credit [Lapuschkin et al., 2019]

12

Explanations are studied in epistemology & philosophy of science. There are many **incompatible** but **complementary** schools of thought:

Table 1: Philosophical Theories of Explanation

	Theory	Explananda (things to be explained)	Explanantia (things doing the explaining)			
al	Deductive-	Observed phenomenon or pattern of phenom-	Laws of nature, empirical observations, and deduc-			
ogical	Nomological	ena	tive syllogistic pattern of reasoning			
Lo	Unification	Observed phenomenon or pattern of phenom-	Logical argument class			
85		ena				
Causal	Transmission	Observed output of causal process	Observed or inferred trace of causal process			
	Interventionist	Variables representing output of causal process	Variables representing input of causal process and			
Ca			invariant pattern of counterfactual dependence be-			
			tween variables			
I	Pragmatic Answers to why-questions		True propositions defined by their relevance re-			
Functional	201904	07 00-1	lation to the explanandum they explain and the			
			contrast class against which the demand for expla-			
			nation is made			
H	Psychological	Observed phenomenon or pattern of phenom-	True propositions defined by their relation to the			
		ena	user's knowledge base and to the explanandum			



Take-away:

• We need explainability!

Take-away:

- We need explainability!
- No unique definition of explanation, even in philosophy

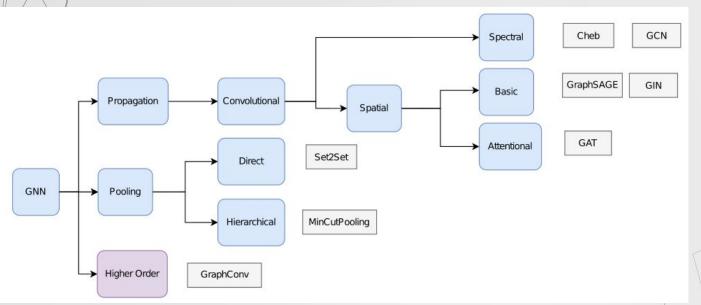


Take-away:

- We need explainability!
- No unique definition of explanation, even in philosophy
- Explaining machine learning models is still an open research question

GNN are well know to you.

Which network do we test?



Zhou et al. Graph neural networks: A review of methods and applications

An overview of the adopted GNN architectures structured in a taxonomy as defined by Zhou et al.

Blue boxes \rightarrow Zhou et al. Pink box \rightarrow Our extension

02 Graph Neural Networks

Dataset	Architecture	GNN	Fully conn.	HyperParams	LR	Epochs	Train Acc	Test Acc
	GCN	30-30-30	10-2	-	0.001	1500	0.994	0.998
Grid	GRAPHSAGE	30-30-30	10-2	-	0.01	3000	X	X
	GAT	30-30-30	10-2	heads = 1	0.01	3000	X	X
	GIN	30-30	30-2	-	0.001	1000	1.0	1.0
	Снев	30-30	30-2	-	0.001	1000	1.0	1.0
	MinCutPool	32-32-32	32-2	2	0.001	700	0.92	0.93
	Set2Set	30-30-30	10-2	-	0.001	1500	0.97	0.97
	GRAPHCONV	30-30	30-2	-	0.001	500	1.0	1.0
	GCN	60-60-60-60	60-10-2	2	0.001	7000	0.97	0.97
	GRAPHSAGE	60-60-60-60	60-10-2	-	0.01	3000	X	X
	GAT	60-60-60-60	60-10-2	heads = 3	0.01	3000	X	X
GRID-HOUSE	GIN	30-30	30-2	2	0.001	1000	0.99	1.0
	Снев	30-30-30	30-2	-	0.001	1000	1.0	0.98
	MinCutPool	32-32-32	32-2	-	0.001	700	0.95	0.95
	Set2Set	60-60-60-60	60-10-2	2	0.001	1500	0.97	0.97
	GRAPHCONV	30-30	30-2	-	0.001	500	1.0	1.0
	GCN	70-70-70	30-3	-	0.005	1000	0.99	1.0
	GRAPHSAGE	30-30-30	30-3	2	0.01	3000	X	X
	GAT	30-30-30	10-3	heads = 1	0.01	3000	X	X
STARS	Gin	40-40	30-3		0.001	3000	0.99	1.0
	Снев	30-30	30-3	-	0.001	1000	0.99	0.99
	MinCutPool	32-32-32	32-3	-	0.001	400	0.99	0.99
	Set2Set	70-70-70	30-3		0.001	1500	0.99	0.99
	GRAPHCONV	30-30	30-3	2	0.001	500	0.99	0.99

Mean agg

Mean agg

Sum agg

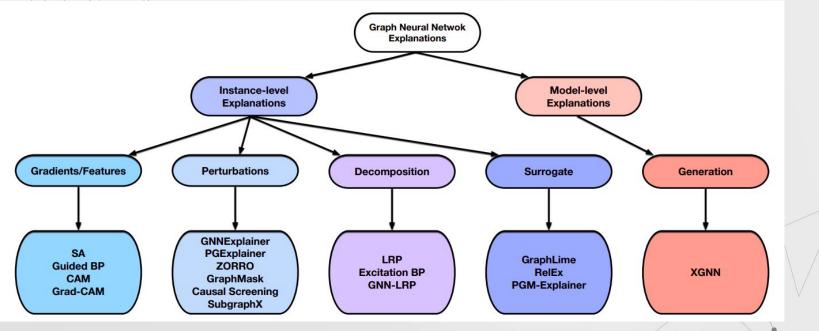
19

03 GNN explainers

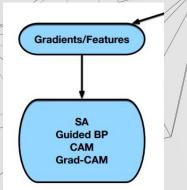
Many GNN explainers have been proposed.

03 GNN explainers

Many GNN explainers have been proposed. We use Yuan taxonomy



Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey

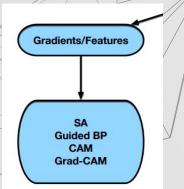


Yuan et al. Explainability in Graph Neural Wetworks: A Taxonomic Survey



Gradient/Feature based:

- They uses gradients to explain the GNN.
- Widely used in image and text.
- Use the gradients as the approximations of input importance.



Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey

What we use:

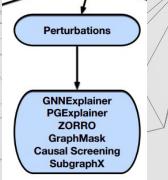
- GradExplNode [1] \rightarrow Node importance mask
- IGNode [3]
- CAM [4]
- GradCAM [4]
- IGEdae [3]

Gradient/Feature based:

- They uses gradients to explain the GNN.
- Widely used in image and text.
- Use the gradients as the approximations of input importance.

- GuidedBP [2] \rightarrow Node importance mask
 - \rightarrow Node importance mask
 - \rightarrow Node importance mask
 - \rightarrow Node importance mask
- GradExplEdge [1] \rightarrow Edge importance mask
 - \rightarrow Edge importance mask

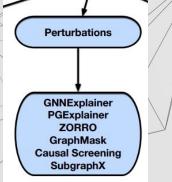
[1] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013. [2] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014. [3] Mukund Sundararajan, Ankur Taly, and Qigi Yan. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR, 2017. [4] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann. Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10772-10781, 2019.



Yuan et al. Explainability in Graph Neural Wetworks: A Taxonomic Survey

Perturbation based:

- Study the output variations with respect to different input perturbations
- Widely used in image and text.
- Key idea \rightarrow perturb important input information should impact the prediction



Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey

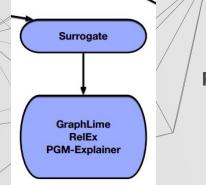
What we use:

- GNNexplainer [5] \rightarrow Edge importance mask
- PGExplainer [6] \rightarrow Edge importance mask

[5] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.
[6] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. Advances in neural information processing systems, 33:19620–19631, 2020.

Perturbation based:

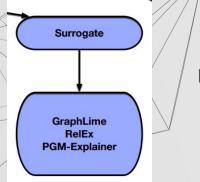
- Study the output variations with respect to different input perturbations
- Widely used in image and text.
- Key idea \rightarrow perturb important input information should impact the prediction



Yuan et al. Explainability in Graph Neural Metworks: A Taxonomic Survey

Perturbation based:

• Use a surrogate interpretable model to approximate the prediction.



Yuan et al. Explainability in Graph Neural Wetworks: A Taxonomic Survey

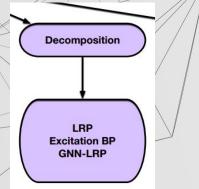
What we use:

• PGM-Explainer [7] \rightarrow Node importance mask

[5] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.
 [6] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. Advances in neural information processing systems, 33:19620–19631, 2020.

Perturbation based:

• Use a surrogate interpretable model to approximate the prediction.

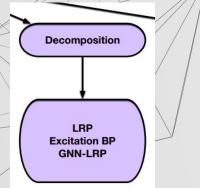


Yuan et al. Explainability in Graph Neural Metworks: A Taxonomic Survey



Decomposition based:

- Decompose the original model prediction into several terms.
- Study the importance of those terms wrt the input feature



Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey

Decomposition based:

- Decompose the original model prediction into several terms.
- Study the importance of those terms wrt the input feature

Model-level- based:

- XGNN [8]
- GLGExplainer [9]

[8] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 430–438, 2020.

[9] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explainability of gnns via logic combination of learned concepts, 2022

Graph Classification:

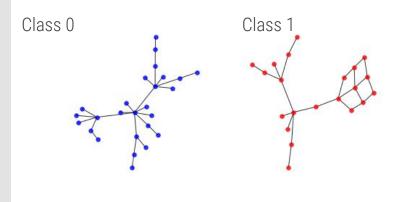
- Grid
- Grid-House
- Stars
- House-Color

Grid:

- Binary graph classification
- Classes:
 - \circ 0 \rightarrow BA random graph
 - \circ 1 \rightarrow BA random graph + 3x3 grid graph

Grid:

- Binary graph classification
- Classes:
 - \circ 0 \rightarrow BA random graph
 - \circ 1 \rightarrow BA random graph + 3x3 grid graph

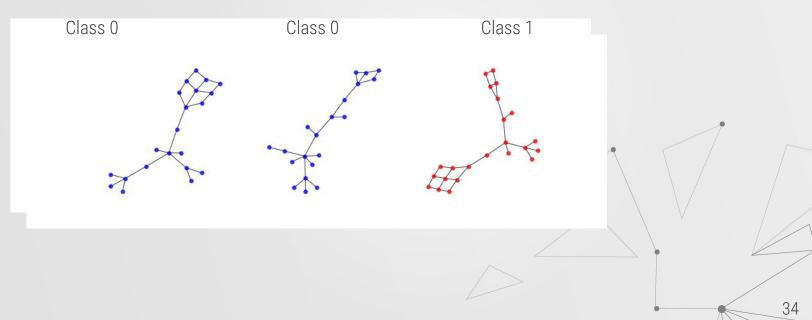


Grid house:

- Binary graph classification
- Classes:
 - \circ 0 \rightarrow BA random graph + 3x3 grid graph **OR** 5 node house graph
 - \circ 1 \rightarrow BA random graph + 3x3 grid graph **AND** 5 node house graph

Grid house:

- Binary graph classification
- Classes:
 - \circ 0 \rightarrow BA random graph + 3x3 grid graph **OR** 5 node house graph
 - 1 \rightarrow BA random graph + 3x3 grid graph **AND** 5 node house graph

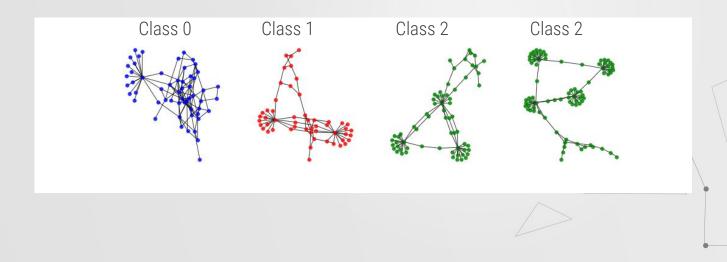


Stars:

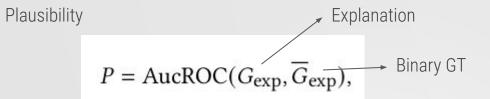
- 3 class graph classification
- Classes:
 - \circ 0 \rightarrow ER random graph + 1 star
 - \circ 1 \rightarrow ER random graph + 2 stars
 - \circ 2 \rightarrow ER random graph + 3 stars **OR** 4 stars

Stars:

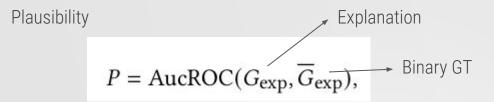
- 3 class graph classification
- Classes:
 - \circ 0 \rightarrow ER random graph + 1 star
 - \circ 1 \rightarrow ER random graph + 2 stars
 - \circ 2 \rightarrow ER random graph + 3 stars **OR** 4 stars



Evaluation



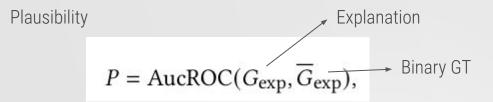
Evaluation



Fidelity

$$F_{f1} = 2 \frac{(1 - F_{suf}) \cdot F_{com}}{(1 - F_{suf}) + F_{com}}.$$

Evaluation



Fidelity

$$F_{f1} = 2 \frac{(1 - F_{suf}) \cdot F_{com}}{(1 - F_{suf}) + F_{com}}.$$

$$F_{suf} = \frac{1}{N_t - 1} \sum_{k=1}^{N_t - 1} \left(g(G) - g(G_{\exp}(t_k)) \right),$$

$$F_{com} = \frac{1}{N_t - 1} \sum_{k=1}^{N_t - 1} \left(g(G) - g(G \setminus G_{\exp}(t_k)) \right),$$

39

So far...

- 8 GNN architectures
- 10 Explainers
- 3 Dataset (6 in the paper)

What we can do?

So far...

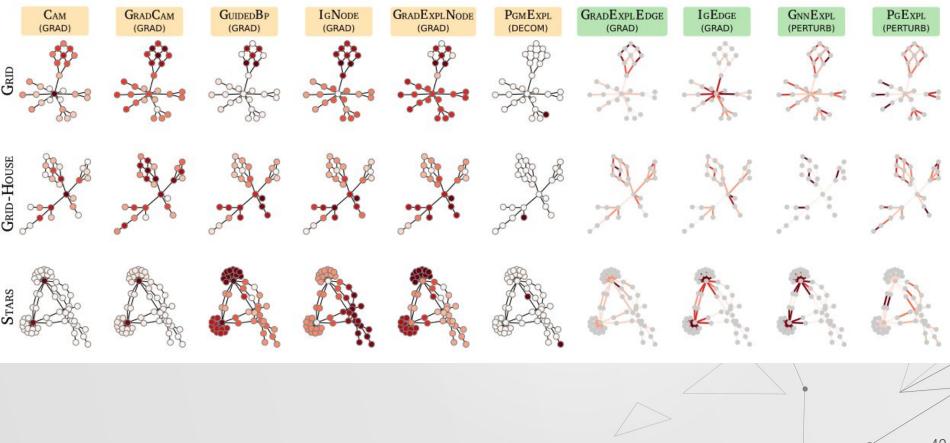
- 8 GNN architectures
- 10 Explainers
- 3 Dataset (6 in the paper)

What we can do?

8x10x6x(1000 graphs) = 480 000 (explanations)

Do not waste time (**and energy)**! If you need, they are available here: https://github.com/AntonioLonga/GraphXAI/tree/main/Explanations 4

Look at them!



- RQ1: How does the architecture affect the explanations?
- RQ2: How do explainers affect the explanations?
- RQ3: How do different types of data affect the explanations?

RQ1: How does the architecture affect the explanations?

- RQ1.1: Which is the architecture that has the best explanation?
- RQ1.2: Which is the easiest architecture to explain?
- RQ1.3: Which is the hardest architecture to explain?

		P	lausibility		
	All	Grid	GRID-HOUSE	Stars	
RQ1.1	GRAPHCONV	GRAPHCONV	Снев	Set2Set	_
RQ1.2	GCN	Снев	GCN	Set2Set	
RQ1.3	GIN	Gin	Gin	MinCutPool	
	10 80-800 cm		Fidelity		~
	All	Grid	GRID-HOUSE	STARS	\sim
RQ1.1	GRAPHCONV	Снев	Set2Set	GraphConv	
RQ1.2	GCN	GCN	MinCutPool	GraphConv	$ \land \land \land$
RQ1.3	GIN	Gin	Gin	MinCutPool	
				/	

RQ2: How do explainers affect the explanations?

RQ2.1: Which is the explainer that explains in the best way?

- RQ2.2: Which is the explainer that explains the maximum number of architectures?
- RQ2.3: Which is the category of explainers that provides the best explanations? (Grad, Pert, Dec)
- RQ2.4: Which is the best mask type between node and edge?

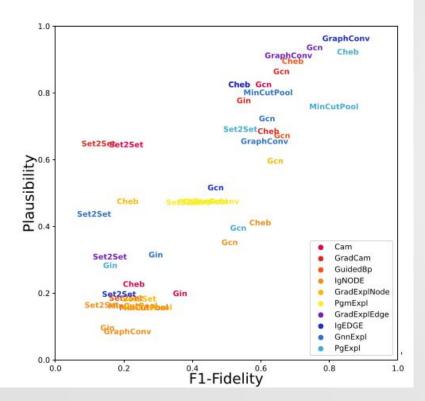
	Plausibility					
	All	Grid	GRID-HOUSE	Stars		
RQ2.1	GRADEXPLEDGE	IGEDGE	PgExpl	IgEdge		
RQ2.2	GRADEXPLEDGE	GRADEXPLEDGE	PgExpl	GRADEXPLEDGE		
RQ2.3	Pert	Pert	Pert	Grad		
RQ2.4	Edge	Edge	Edge	Edge		
	Fidelity					
	All	Grid	GRID-HOUSE	Stars		
RQ2.1	IGEDGE	PgExpl	IgEdge	GRADEXPLEDGE		
RQ2.2	IGEDGE	IGEDGE	IGEDGE	GNNEXPL		
RQ2.3	Pert	Pert	Pert	Pert		
RQ2.4	Edge	Edge	Edge	Edge		

RQ3: How do different types of data affect the explanations?

RQ3: How do different types of data affect the explanations?

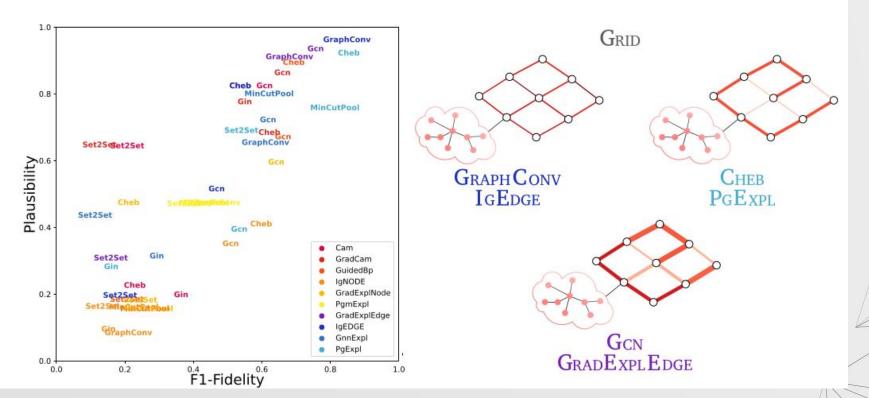
47

GRID

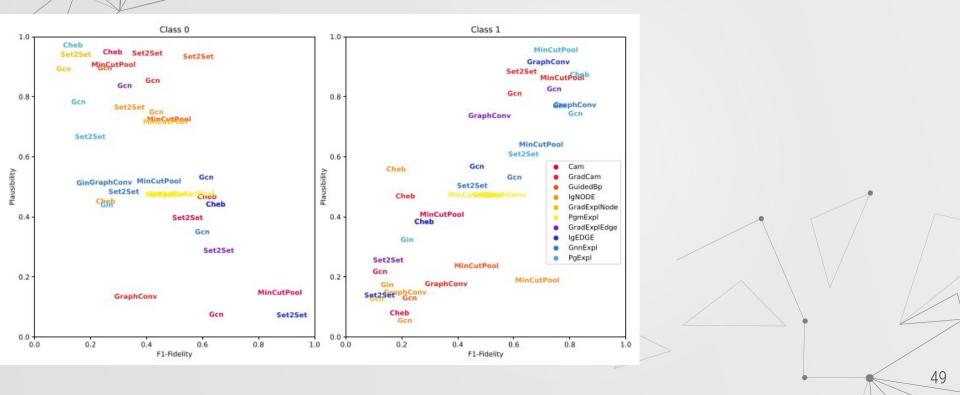


RQ3: How do different types of data affect the explanations?

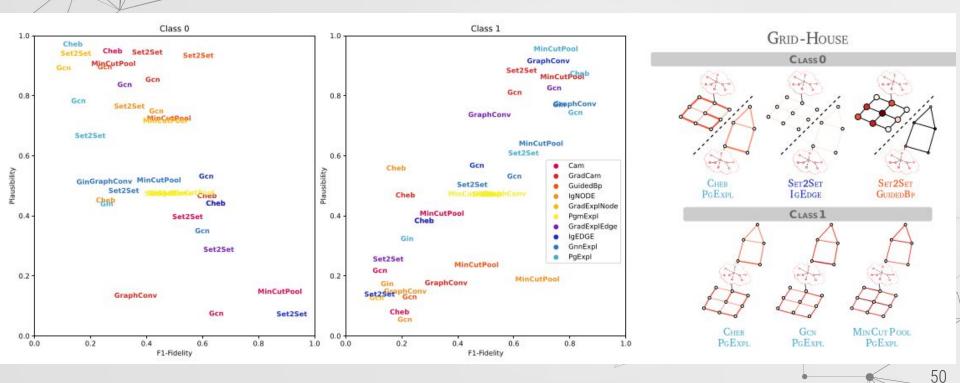
GRID



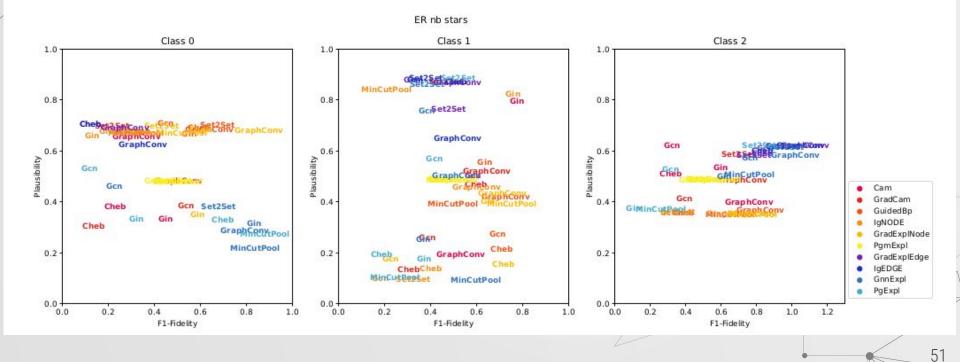
RQ3: How do different types of data affect the explanations? **GRID HOUSE**



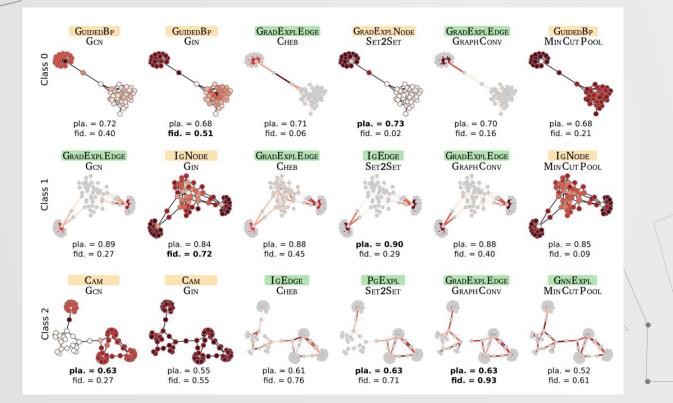
RQ3: How do different types of data affect the explanations? **GRID HOUSE**



RQ3: How do different types of data affect the explanations? **STARS**



RQ3: How do different types of data affect the explanations? **STARS**

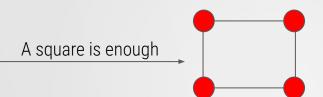


1) Human bias when defining Ground Truth.

a) In GRID network do we need the entire grid?

1) Human bias when defining Ground Truth.

a) In GRID network do we need the entire grid?



- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

Node Classification

56

- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars

Node Classification

- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars

Node embedding ----> **SUM** ---> Graph embedding

Node Classification

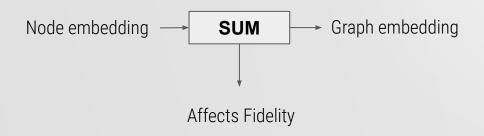
- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars



Node Classification

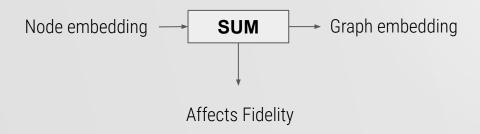
- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars



I) Comprehensiveness \rightarrow difficult to define

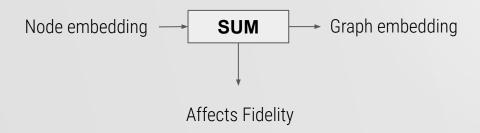
- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars



Node Classification

1) Comprehensiveness \rightarrow difficult to define

- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...

a) NOPE

Graph Classification

STARS

- 1) Identify stars
- 2) Count them
- 3) Classify according to the frequence of stars

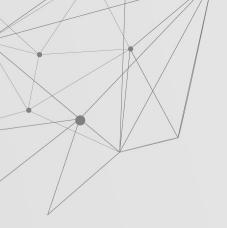
Node embedding SUM Graph embedding Affects Fidelity

Node Classification

1) Comprehensiveness \rightarrow difficult to define

The entire graph has the perfect score!!!

- 1) Human bias when defining Ground Truth.
 - a) In GRID network do we need the entire grid?
- 2) We could use only the fidelity...
 - a) NOPE
- 3) Overall it seems that:
 - a) Node Classification \rightarrow Gradient based.
 - b) Graph Classification \rightarrow Edge mask based on Gradient or Perturbation.



Thanks! Do you have any questions?

Antonio Longa <u>alonga@fbk.eu</u> <u>https://antoniolonga.github.io/</u> <u>https://twitter.com/AntonioLonga94</u>

